• Title/Summary/Keyword: SAR study

Search Result 639, Processing Time 0.03 seconds

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

Ocean Wind Retrieval from RADAR SAR images in Korean seas (SAR자료를 이용한 해상풍 산출 및 현장 자료간의 비교.검정)

  • Yoon Hong-Joo;Park Kwang-Soon;Kim Sang-Ik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.706-711
    • /
    • 2006
  • In order to retrieve ocean wind from SAR() image, and to estimate and validate between SAR-derived wind and in-situ wind, with RADAR SAR ocean images and real time marine meteorological data. It was used images with more than 10km to analyze the band of wind in SAR image by FFT(First Fourier Transformation) method and was used CMOD5 as wind retrieval model to retrieve ocean wind. In this study, generally it showed good results as RMS presented 0.8m/s for speed and 8 degree for direction, and especially when wind was hish speed, it presented very good results.

A Study on the Automatic Adjustment of the Parabolic SAR by using the Fuzzy Logic (퍼지이론을 이용한 파라볼릭 SAR의 자동 조절에 관한 연구)

  • Chae, Seog;Shin, Soo-Young;Kong, In-Yeup
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.230-236
    • /
    • 2011
  • This paper proposes the possibility which the fuzzy theory can be used to improve the performance of the parabolic SAR(Stop-And-Reverse) indicator in the trading systems for stock market. The simulation results with data of the KOSPI 200 future show that the occurred number of trading signals and the false signals in the proposed fuzzy SAR indicator is less than that in the conventional SAR indicator. In the conventional SAR system, the incremental value of the acceleration factor is usually setted as 0.02 and the maximum value of the acceleration factor is usually limited as 0.2. But in the proposed fuzzy SAR system, the incremental value and the maximum value of the acceleration factor are automatically adjusted by using the fuzzy rules, which are designed based-on the difference between short-term moving average and medium-term moving average and also based-on the slope of short-term moving average.

A Study on Evaluation of Jamming Performance on SAR Satellite (SAR 위성에 대한 재밍 효과 분석)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae;Kwak, Hyun-Kyu;Shin, Wook-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.252-257
    • /
    • 2010
  • SAR has pulse compression gain through the process including range and azimuth. Efficient jammers against the SAR with simulated elements are evaluated in the view of power and SAR image. In this paper, J/S is analysed for SAR with RF propagation equation firstly. Several jamming signals on SAR signal are made into SAR image through pulse compression process. Objective jamming performance is evaluated using euclidean distance.

A Study on Airborne SAR System and Image Formation (항공탑재 SAR 시스템 및 영상형성 연구)

  • Hyo-I Moon;Jae-Hyoung Cho;Dong-Ju Lim;Min-Ho Go
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.475-482
    • /
    • 2023
  • Synthetic Aperture Radar (SAR), which provides images of targets using radio signals, enables monitoring at all times regardless of weather conditions. In this paper, the SAR system was installed on the test aircraft to collect SAR raw data on the ground and the sea, and the results of image formation using the backprojection algorithm were presented.

FEASIBILITY STUDY OF SYNTHETIC APERTURE RADAR - ADAPTABILITY OF THE PAYLOAD TO KOMPSAT PLATFORM

  • Kim, Young-Soo;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 2002
  • Synthetic Aperture Radar (SAR) has been used for mapping the surface geomorphology of cloudy planets like Venus as well as the Earth. The cloud-free Mars is also going to be scanned by SAR in order to detect buried water channels and other features under the very shallow subsurface af the ground. According to the 'Mid and Long-term National Space Development Plan' of Korea, SAR satellites, in addition to the EO (Electro-Optical) satellites, are supposed to be developed in the frame of the KOMPSAT (Korean Multi-Purpose Satellite) program. Feasibility of utilizing a SAR payload on KOMPSAT platform has been studied by KARI in collaboration with Astrium U.K. The purpose of the ShR program is Scientific and Civil applications on the Earth. The study showed that KOMPSAT-2 platform can accommodate a small SAR like Astrium’s MicroSAR. In this paper, system aspects of the satellite design are presented, such as mission scenario, operation concept, and capabilities. The spacecraft design is also discussed and conclusion is followed.

Feasibility Studies of DInSAR in the Northeastern Kyungsang Basin, Korea

  • Lee, C.W.;Kim, S.W.;Jung, H.C.;Won, J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1070-1072
    • /
    • 2003
  • This study focuses on examing the feasibility of differential SAR interferometry (DInSAR) in the Northeastern Kyungsang Basin, Korea. Major faults in the Kyungsang Basin such as Yangsan fault, Dongrae fault, and Ulsan fault had developed during Cretaceous, and the activeness of these faults is still controversial in Korean geology community. We attempt to measure displacements in the study area by applying DInSAR techniques to JERS-1 SAR data sets. Some surface displacements are recognized by DInSAR method at Young-il Bay in which the POSCO Company locates, although the displacements may not be directly associated with geologic structures. We also discuss atmospheric effects for the techniques used.

  • PDF

Extraction of Ground Control Points from TerraSAR-X Data

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.328-331
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) solely from SAR data without published maps. TerraSAR-X is now in orbit and provides valuable data that have one of the highest spatial resolutions among civilian SAR systems. In this study, a sophisticated method for GCP coordinate extraction from TerraSAR-X stripmap mode data with a 3 m resolution was tested and the quality of the extracted GCPs was evaluated. An inverse-geolocation algorithm was applied to obtain GCPs from TerraSAR-X data. SRTM 90m DEM was used as an auxiliary data set for azimuth time correction of the SAR data. Mean values of the distance errors were 0.11 m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from current civilian remote sensing systems. The extracted GCPs were used for geo-rectification of an IKONOS image, which demonstrated the applicability of the GCPs to geo-rectification of high resolution optic image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

  • PDF

A study on enhanced D-InSAR technique Considering Spatial and Temporal Coherence (공간적·시간적 긴밀도를 고려한 개선된 D-InSAR 기법에 관한 연구)

  • Lee, Won Eung;Yoon, Hong Sik;Youm, Min Kyo;Kim, Han Bual
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • The D-InSAR is a technique for precisely measuring the subsidence of subsidence using difference of two SAR images. In order to calculate the subsidence using D-InSAR, a high coherence between master image and the slave image is essential. Since the existing D-InSAR method calculates the displacement based on the total coherence, the accuracy of the subsidence is lowered when the coherence map contains mountains or bare-land. In order to solve this problem, in this study, a point having a temporal coherence and spatial coherence of 0.7 or more was extracted to form TIN, and the subsidence was calculated based on this TIN. In addition, we compared the existing D-InSAR technique with the new D-InSAR technique considering spatial and temporal coherence. As a result, the new D-InSAR technique showed smaller standard deviation, relative variance, variation coefficient and quadrature deviation than the existing D-InSAR technique. It is also easy to grasp the trend of the subsidence.