DOI QR코드

DOI QR Code

공간적·시간적 긴밀도를 고려한 개선된 D-InSAR 기법에 관한 연구

A study on enhanced D-InSAR technique Considering Spatial and Temporal Coherence

  • 이원응 (성균관대학교 대학원 방재안전공학협동과정) ;
  • 윤홍식 (성균관대학교 방재안전공학협동과정) ;
  • 염민교 (성균관대학교 대학원 방재안전공학협동과정) ;
  • 김한별 (성균관대학교 대학원 방재안전공학협동과정)
  • Lee, Won Eung (Department of Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University) ;
  • Yoon, Hong Sik (Department of Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University) ;
  • Youm, Min Kyo (Department of Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University) ;
  • Kim, Han Bual (Department of Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University)
  • 투고 : 2017.06.09
  • 심사 : 2017.06.27
  • 발행 : 2017.06.30

초록

D-InSAR 기법이란 두 장의 SAR 영상의 위상 차이를 이용하여 지표면의 변위를 정밀하게 측정하는 기법이다. D-InSAR를 이용한 정밀한 지표변위량 산출을 위해서는 주영상과 부영상간의 높은 긴밀도가 필수적이다. 기존의 D-InSAR 방식은 주영상과 부영상의 전체 긴밀도를 토대로 지표변위량을 산출하기 때문에, 영상에 긴밀도가 낮은 산지나 나지 등이 포함될 경우 전체적인 지표변위량의 정확도가 낮아지는 문제가 발생한다. 이러한 문제점을 해결하기 위해 본 연구에서는 0.7 이상의 시간적 긴밀도와 공간적 긴밀도를 갖는 지점을 추출하여 불규칙삼각망을 형성, 이를 토대로 지표변위량을 산출하였다. 또한 기존 D-InSAR 방식과 공간적 시간적 긴밀도를 고려한 D-InSAR 방식의 비교분석을 실시하였다. 그 결과 공간적 시간적 긴밀도를 고려한 D-InSAR 기법이 기존의 D-InSAR 기법보다 표준편차, 상대분산, 변동계수, 사분편차가 작게 나타났으며, 지표변위량의 일정한 추세를 파악하는데 용이함을 알 수 있었다.

The D-InSAR is a technique for precisely measuring the subsidence of subsidence using difference of two SAR images. In order to calculate the subsidence using D-InSAR, a high coherence between master image and the slave image is essential. Since the existing D-InSAR method calculates the displacement based on the total coherence, the accuracy of the subsidence is lowered when the coherence map contains mountains or bare-land. In order to solve this problem, in this study, a point having a temporal coherence and spatial coherence of 0.7 or more was extracted to form TIN, and the subsidence was calculated based on this TIN. In addition, we compared the existing D-InSAR technique with the new D-InSAR technique considering spatial and temporal coherence. As a result, the new D-InSAR technique showed smaller standard deviation, relative variance, variation coefficient and quadrature deviation than the existing D-InSAR technique. It is also easy to grasp the trend of the subsidence.

키워드

과제정보

연구 과제 주관 기관 : 국토교통부

참고문헌

  1. Abdelfattah, R., Nicolas, J. M., Tupin, F. and Badredine, B., 2001, InSAR Coherence Estimation for Temporal Analysis and Phase Unwrapping Applications, INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, Vol. 5, pp. 2292-2294.
  2. Ding, X. and Huang, W., D-InSAR monitoring of crustal deformation in the eastern segment of the Altyn Tagh Fault, 2011, International journal of remote sensing, Vol. 32 No. 7, pp. 1797-1806. https://doi.org/10.1080/01431160903490190
  3. Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. and Sun, Q., 2012, 3D coseismic Displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements, JOURNAL OF GEODESY, Vol. 86, No. 11, pp. 1029-1041. https://doi.org/10.1007/s00190-012-0563-6
  4. Kim, J. R., Lin, S. Y., Hong, S., Choi, Y. S., Yun, H. W., 2014, Ground deformation tracking over Mt. Baekdu: A pre-evaluation of possible magma recharge by D-InSAR analysis, KSCE JOURNAL OF CIVIL ENGINEERING, Vol. 18, No. 5, pp. 1505-1510. https://doi.org/10.1007/s12205-013-0126-2
  5. Kwok, R., Fahnestock, M. A., 1996, Ice Sheet Motion and Topography from Radar Interferometry, IEEE transactions on geoscience and remote sensing, Vol. 34, No. 1, pp. 189-200. https://doi.org/10.1109/36.481903
  6. Liu, L., Jafarov, E. E., Schaefer, K. M., Jones, B. M., Zebker, H. A., Williams, C. A., Rogan, J. and Zhang, T., 2014, InSAR detects increase in surface subsidence caused by an Arctic tundra fire, Geophysical research letters, Vol. 41, No. 11, pp. 3906-3913. https://doi.org/10.1002/2014GL060533
  7. Liu, L., Schaefer, K., Zhang, T., Wahr, J., 2012, Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence, Journal of Geophysical Research, Vol. 117, No. F1, F01005.
  8. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, Vol. 364, No. 6433, pp. 138-142. https://doi.org/10.1038/364138a0
  9. Raymond, D., 1997, ERS-SAR interferometry: Potential and limits for mining subsidence detection, ESA-SP(European Space Agency-Special Publication), Vol. 414, No. 2, pp. 541-544.
  10. Rucker, M. L., Panda, B. B., Meyers, R. A., Lommler, J. C., 2013, Using InSAR to detect subsidence at brine wells, sinkhole sites, and mines, CARBONATES AND EVAPORITES, Vol. 28, No. 1-2, pp. 141-147. https://doi.org/10.1007/s13146-013-0134-9
  11. Wang, T., Liao, M., Perissin, D., 2010, InSAR Coherence-Decomposition Analysis, IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 1, pp. 156-160. https://doi.org/10.1109/LGRS.2009.2029126
  12. Zhu, W., Zhang, Q., Ding, X., Zhao, C. , Yang, C. and Qu, W., 2013, Recent ground deformation of Taiyuan basin (China) investigated with C-, L-, and X-bands SAR images, Journal of geodynamics, vol. 70, pp. 28-35. https://doi.org/10.1016/j.jog.2013.06.003

피인용 문헌

  1. 원격탐사를 이용한 하천 제방 변위량 측정과 취약지점 선별 vol.14, pp.1, 2017, https://doi.org/10.21729/ksds.2021.14.1.41