• Title/Summary/Keyword: SAR imagery

Search Result 131, Processing Time 0.026 seconds

Extraction of SAR Imagery Informations for the Classification Accuracy Enhancement - Using SPOT XS and RADARSAT SAR Imagery (광학영상의 토지피복분류 정확도 향상을 위한 SAR 영상 정보의 처리에 관한 연구)

  • Seo, Byoung-Jun;Park, Min-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.121-130
    • /
    • 2000
  • For the land-cover classification we have usually used imagery of the optical sensors only. But currently a number of the satellite with various sensors are operating and the availability of using the data acquired from them are increasing. SAR sensors, in particular, can produce additional informations on the land-cover which has not been available from optical sensors. On this study, I have applied the SAR Image to the SPOT XS image in the classification procedures, and analysed the classified results. In this procedure I have extracted texture informations from SAR intensity images, then applied both intensity and texture informations. From the accuracy analysis, overall accuracy are increased slightly when the SAR texture was applied. In case of the Built-up class the results showed higher accuracy than those of when only the SPOT XS image was used. From this result I can show that overall accuracy was increased slightly but the spatial distribution of classes was visibly improved.

  • PDF

A Case Study of Amplitude-Based Change Detection Methods Using Synthetic Aperture Radar Images (위성 레이더 영상을 활용한 강도 기반 변화탐지기술 활용 사례연구)

  • Seongjae Hong;Sungho Chae;Kwanyoung Oh;Heein Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1791-1799
    • /
    • 2023
  • The Korea Aerospace Research Institute is responsible for supplying and supporting the utilization of imagery data from the Arirang satellite series for organizations affiliated with the Government Satellite Information Application Consultation. Most of them primarily utilize optical imagery, and there is a relative lack of utilization of Synthetic Aperture Radar (SAR) imagery. In this paper, as part of supporting the use of SAR images, we investigated SAR intensity-based change detection algorithms and their use cases that have been researched to determine SAR intensity-based change detection algorithms to be developed in the future. As a result of the research, we found that various algorithms utilizing intensity difference, correlation coefficients, histograms, or polarimetric information have been researched by numerous researchers to detect and analyze change pixels and the applications of change detection algorithms have been studied in various fields such as a city, flood, forest fire, and vegetation. This study will serve as a reference for the development of SAR change detection algorithms, intended for utilization in the Government Satellite Information Application Consultation.

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

Oceanic Pycnocline Depth Estimation from SAR Imagery

  • Yang, Jingsong;HUANG, Weigen;XIAO, Qingmei;ZHOU, Chenghu;ZHOU, Changbao;HSU, Mingkuang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.304-306
    • /
    • 2003
  • Oceanic pycnocline depth is usually obtained from in situ measurements. As ocean internal waves occur on and propagate along oceanic pycnocline, it is possible to estimate the depth remotely. This paper presents a method for retrieving pycnocline depth from synthetic aperture radar (SAR) imagery where internal waves are visible. This model is constructed by combining a two-layer ocean model and a nonlinear internal wave model. It is also assumed that the observed groups of internal wave packets on SAR imagery are generated by local semidiurnal tides. Case study in East China Sea shows a good agreement with in situ CTD data.

  • PDF

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

Effects of Speckle Filtering on Synthetic Aperture Radar (SAR) Imagery (레이더 영상자료의 Speckle 필터링 효과)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.155-168
    • /
    • 1996
  • Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

L-band SAR Monitoring of Rice Crop Growth

  • Lee, Kyu-Sung;Hong, Chang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.479-484
    • /
    • 1999
  • Rice crop has relatively short growing season during the summer in Korea and, therefore, it is often difficult to acquire cloud-free imagery on time. This study was attempt to define the temporal characteristics of radar backscattering observed from satellite L-band SAR data on different growing stages of rice crop. Six scenes of multi-temporal JERS SAR data were obtained from the transplanting season to the harvesting month of October. Six layers of multi-temporal SAR data were registered on a common geographic coordinate system. Using topographic maps, field collected data, and Landsat TM data, several sample rice fields were delineated from the imagery and their relative radar backscatters were calculated by using a set of reference targets. The temporal pattern of radar backscattering was very distinctive by the growing stage of rice crop. It was also separable between two types of rice fields having different cultivation practices. Considering the temporal characteristics of radar backscattering observed from the study, it is obvious that a certain date of the growing season can be more effective to delineate the exact area of the cultivated rice crop field.

  • PDF