• Title/Summary/Keyword: SAR image quality

Search Result 63, Processing Time 0.023 seconds

Method for Eliminating Spurious Signal from Deramped SAR Raw Data (Deramped SAR 원시데이터에서 효율적인 Spurious 신호 제거 기법)

  • Lim, Byoung-Gyun;Ryu, Sang-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • Deramping technique has been widely used to acquire high resolution SAR(Synthetic Aperture Radar) images for the advantage of the data size and the processing time. However, unwanted spurious signals caused by SAR hardware can be leaked in the process of converting into a digital signal through the ADC(Analog-Digital Converter) and added in a echo signal. These tones make image quality degrade significantly. In order to solve this problem, the unwanted tones need to be detected by analysing the characteristic of the noise tone and then effectively removed from raw data. In this paper, we propose a method for efficiently removing noise tone on the raw data based on the characteristic of spurious signals.

Extraction of Ground Control Points from TerraSAR-X Data (TerraSAR-X를 이용한 지상기준점 추출)

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) from SAR data itself without published maps. TerraSAR-X data that are one of highest spatial resolution among civilian SAR systems is now available. In this study, a sophisticated method for GCP extraction from TerraSAR-X data was tested and the quality of the extracted GCPs was evaluated. Mean values of the distance errors were 0.11m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from any civilian remote sensing systems. The extracted GCPs were used for geo-rectification of IKONOS image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

Operational Concept Design and Verification for Airborne SAR System (항공탑재 SAR 시스템 운용개념 설계 및 검증)

  • Lee, Hyon-Ik;Kim, Se-Young;Jeon, Byeong-Tae;Sung, Jin-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.588-595
    • /
    • 2013
  • Airborne SAR system is the imaging Radar system that is loaded on a manned or unmanned aircraft, which is in charge of high quality image acquisition and moving target detection. This paper describes the operational requirements for the Airborne SAR system and suggests the operational concept to satisfy the requirements. To be specific, it describes the interface with airborne system, state definition and transition, operation mode based on mission definition file, fault management, and data storing and transmission concept. Finally, it gives the ground test results to verify the SAR system operational concept.

Evaluation of Clinical Usefulness of Radio-Frequency Power Limitation in Brain MRI of Patients with Deep Brain Stimulation (뇌심부자극술 시술환자의 뇌 자기공명영상에서 고주파 출력의 제한기준에 대한 임상적 유용성 평가)

  • Yeon, Kyoo-Jin;Chang, Young-Ae;Lee, Seung-Keun;Lee, Tae-Soo
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.139-144
    • /
    • 2017
  • To evaluation of clinical usefulness for B1+RMS limits, we compared image quality of Routine, Specific absorption rate (SAR) and Root mean square (RMS) protocol. 5 volunteers underwent Magnetic Resonance Imaging (MRI) scan of the brain using three different protocols. We draw Region of interest ROI in cortex, white matter, gray matter, putamen and thalamus of axial plan. Signal to noise ratio (SNR) were evaluated in each area and Contrast to noise ration (CNR) were evaluated between white matter and gray matter. Qualitative evaluation was used to score each ROI. B1+RMS is confirmed its usefulness compared to conventional SAR standard on the aspect of improvement of image quality, reduction of scan time and easy adjusting parameter.

SAR Test-bed to Acquire Raw Data and Form Real-time Image (실시간 영상형성 및 원시데이터 획득용 SAR 테스트 베드)

  • Shin, Hyun-Ik;Kwon, Kyoung-Il;Yoon, Sang-Ho;Kim, Hyung-Suk;Hwang, Jeonghun;Ko, Young-Chang;You, Eung-Noh;Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Synthetic aperture radar(SAR) has been widely used for reconnaissance. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications. Because SAR coherently combines many viewing angles to effectively create a large aperture(narrow beam) radar, the test-bed should be capable of moving straightly SAR sensor for the integration angle to meet resolution. This paper describes the test-bed developed to test and evaluate the SAR performance. It forms high-quality images in real time and saves the raw data for the purpose of post processing on the ground.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

A progressive image transmission system based on wavelet (웨이브렛 기반 점진적 영상 전송 시스템)

  • 윤국진;조숙희;안충현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • In this paper, we propose a new progressive image transmission system including the image coding scheme that efficiently uses the relationship between the properties of a spatial image and its wavelet transform. Firstly, an original image is decomposed into several layers by the wavelet transform, and simultaneously decomposed into 2"x2" blocks. Each image is classified into two image types according to the standard deviations of its blocks. And then each block is categorized into two regions by different thresholds according to the image types, i.e., significant activity region (SAR) and insignificant activity region (IAR). Simulation results show that the proposed coding method has better performance than the EZW and SPIHT in terms of image quality and transmitted bit-rate. In addition, it can be applied to the applications requiring the progressive image transmission.nsmission.

  • PDF

Ground Moving Target's Velocity Estimation in SAR-GMTI (SAR-GMTI에서 지상이동표적의 속도 추정 기법)

  • Bae, Chang-Sik;Jeon, Hyeon-Mu;Yang, Dong-Hyeuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • A ground moving target's velocity estimation algorithm applicable for a SAR-GMTI system using 2 channel displaced phase center antenna(DPCA) is proposed. In this algorithm, we assume target's across-track velocity can be estimated by along-track interferometry (ATI) and present a method to estimate target's along-track velocity. To accomplish this method, we first transform a radar-target geometry in which a moving target has zero velocity via altering a radar velocity such that target's velocity is reflected into it and next manipulate the spectral centers of the subapertures within the synthetic aperture. The validity of the proposed algorithm is demonstrated through simulation results showing the performance of the target's velocity estimation and the enhancement of reconstructed target image quality in terms of resolution and SINR.

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.

Two-Dimensional Filtering Through the Radon Transform (라돈변환을 이용한 2차원 필터링)

  • 원중선
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.17-36
    • /
    • 1998
  • The Radon transform has been widely used in various techniques of digital image processing such as the computerized topography, lineament analysis in a remotely sensed image, slant-stack processing of seismic data, and so on. Compared to the Fourier transform, the utility of two-dimensional convolutional or correlational properties of the Radon transform, however, has been underestimated. We show that the two-dimensional convolution and correlation is respectively reduced to be one-dimensional convolution and correlation with respect to ρ in the Radon space. Therefore, one can achieve a two dimensional filtering by applying a simple one-dimensional convolution in the Radon space followed by an inverse Radon transform. Tests of the approach using FIR filters are carried out specifically for enhancing the ship wake in a RADARSAT SAR image. The test results demonstrate that the two-dimensional filtering through the Radon transform effectively enhance the ship wake features as well as reducing sea speckle in the image. Although two-dimensional convolution and correlation through the Radon transform are not so much useful as those through the courier transform in views of efficiency and effectiveness, it can be utilized to improve the quality of a digitally processed output when the process should be accompanied by the Radon transform such as topography and lineament analysis of SAR image.