• Title/Summary/Keyword: SAM(Surface-to-air missile)

Search Result 11, Processing Time 0.022 seconds

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Theater Ballistic Missile Defense (복합-휴리스틱 알고리즘을 이용한 지대공 유도무기(SAM) 최적배치 방안 : 탄도미사일 방어를 중심으로)

  • Lee, Jae-Yeong;Kwak, Ki-Hoon
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.262-273
    • /
    • 2008
  • In Korean peninsular, Air Defense with SAM(Surface-to-Air Missile) is very important, because of threatening by North Korea's theater ballistic missiles installed with nuclear or biochemistry. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Multi-heuristic algorithm which can handle both factors simultaneously for solving allocation problem of the batteries and missile assignment problem in each battery. To solve allocation problem, genetic algorithm is used to decide location of the batteries. To solve missile assignment problem, a heuristic algorithm is applied to determine the number of SAM for each target. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of missile defense operations.

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense (복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로)

  • Kwak, Ki-Hoon;Lee, Jae-Yeong;Jung, Chi-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

A Design of Management and Verification Tool of Component and A Development of SAM Simulator based on Dynamic Reconfiguration Architecture (컴포넌트 관리 및 검증도구 설계와 동적 재구성 아키텍처 기반 SAM 시뮬레이터 개발)

  • Suk, Jeebeom;Lee, Jaeoh;Lee, Jaejin;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • Modeling and simulation techniques construct experimental environment considering battlefields and are able to analyze performance of components of weapon system that closely resemble reality. However, developed model has low scalability and not cared reusability because it has been used only in a limited range of domain. In this paper, we develop a verification tool to verify reusability of developed component for dynamic reconfiguration and to judge scalability of it and a management tool to control data of it effectively. In addition, dynamic reconfiguration architecture of guided weapon systems designed in the previous study has been applied to SAM(Surface to Air Missile) System Simulator, and we study effectiveness of the developed component. Thus the user can configure various guided weapon systems through simulation application of dynamic reconfiguration architecture of component.

Study on Electromagnetic Testing for Surface-to-Air Missile system and Method for Test Complementation (대공유도무기체계의 전자기 시험 고찰 및 시험 보완 방법)

  • Young-jae Kim;Sang-hoon Koh;Dong-hyun Park;Seok-choo Han;Dae-hyun Lee;Jeong-woo An
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.456-463
    • /
    • 2022
  • The SAM(Surface-to-Air Missile) systems will be operated until disposing of it after production, the necessary test and evaluation should be performed during the development stage to ensure the operational performance after deployment. As development of technologies related to the electromagnetic wave field of missile system is required, so the verification of the electromagnetic environment has become more important. Therefore it is necessary to carefully review whether there are any weaknesses through the analysis of the SAM system when establishing the test and evaluation procedure. This paper describes the general electromagnetic test procedure for SAM system and discusses the matters that need to be supplemented. Also, methods for supplementation and review results were written.

Study on Methods in Test & Evaluation of the Guided Rocket Munition (유도형 로켓탄의 시험평가 방법에 관한 연구)

  • Ahn, Mahn-Ki;Kwon, Tag-Mahn;Hwang, Un-Hee;Hwang, Woo-Yull
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1019-1025
    • /
    • 2010
  • This paper describes on methods in test and evaluation of the guided rocket munitions of the domestic new generation multiple launcher rocket system. We modified and refer to the present model of air-to-air missile(AAM) and surface-to-air missile(SAM). Also we suggested a method of surface-to-surface missile(SSM) based on the characteristics of the guided rocket in test and evaluation(T&E). According to this study, the suggested activity of T&E should be observed methods compatible with each item on the established model. Therefore, we expect that the proposed research material will be a good guide to the study of a surface-to-surface missile(SSM) installed GPS/INS integration navigation guidance & control systems in the future.

A Novel Range Estimator for Surface to Air Missile with Closing Velocity Measurements

  • Ra, W.S.;Whang, I.H.;Lee, J.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1822-1825
    • /
    • 2003
  • A practical range estimator based on the robust Kalman filter is proposed to solve the range estimation problem for surface to air missile(SAM) homing guidance. Apart from the previous works based on the extended Kalman filter(EKF) with bearing only measurement, the proposed scheme makes use of line-of-sight(LOS) rate to ensure the fast convergency at long-range. In this reason, the robust Kalman filter is considered to deal with LOS rate measurement error. The recursive linear structure of proposed filter is easy to implement and make it possible to reduce computational burdens. Moreover, it shows good estimation performance without specific guidance law such as oscillation proportional navigation guidance(OPNG).

  • PDF

A Design and Application of HLA-Based Air Defense Simulation Framework (HLA 기반 대공유도무기 시뮬레이션 프레임워크 설계 및 사례적용)

  • Cho, Byung-Gyu;Kim, Sae-Hwan;Youn, Cheong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.709-718
    • /
    • 2005
  • To correspond with the unpredictable future tactical environment, Ive expanded the application of M&S(Modeling & Simulation) that is more scientific and more economic in a field of weapon system development process. This paper describes experience in development of ADSF(Air Defense Simulation Framework) that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP as well as real-time distributed simulation. ADSF has been applied to the M-SAM(Medium Range Surface to Air Missile) System Simulator, and satisfying test results through GPS(Global Positioning System) timer has been acquired. As a result, an ADSF which is able to support HLA and TCP/IP as veil as precise real-time simulation has been successfully made. we were in need or a real-time simulation engine to support Air Defense System Simulators that were consisted of several subsystems.

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

Development of a DEVS Simulator for Electronic Warfare Effectiveness Analysis of SEAD Mission under Jamming Attacks (대공제압(SEAD) 임무에서의 전자전 효과도 분석을 위한 DEVS기반 시뮬레이터 개발)

  • Song, Hae Sang;Koo, Jung;Kim, Tag Gon;Choi, Young Hoon;Park, Kyung Tae;Shin, Dong Cho
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.33-46
    • /
    • 2020
  • The purpose of Electronic warfare is to disturbe, neutralize, attack, and destroy the opponent's electronic warfare weapon system or equipment. Suppression of Enemy Air Defense (SEAD) mission is aimed at incapacitating, destroying, or temporarily deteriorating air defense networks such as enemy surface-to-air missiles (SAMs), which is a representative mission supported by electronic warfare. This paper develops a simulator for analyzing the effectiveness of SEAD missions under electronic warfare support using C++ language based on the DEVS (Discrete Event Systems Specification) model, the usefulness of which has been proved through case analysis with examples. The SEAD mission of the friendly forces is carried out in parallel with SSJ (Self Screening Jamming) electronic warfare under the support of SOJ (Stand Off Jamming) electronic warfare. The mission is assumed to be done after penetrating into the enemy area and firing HARM (High Speed Anti Radiation Missile). SAM response is assumed to comply mission under the degraded performance due to the electronic interference of the friendly SSJ and SOJ. The developed simulator allows various combinations of electronic warfare equipment specifications (parameters) and operational tactics (parameters or algorithms) to be input for the purpose of analysis of the effect of these combinations on the mission effectiveness.