• 제목/요약/키워드: SALT STRESS

검색결과 595건 처리시간 0.028초

The mechanical properties of rock salt under cyclic loading-unloading experiments

  • Chen, Jie;Du, Chao;Jiang, Deyi;Fan, Jinyang;He, Yi
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.325-334
    • /
    • 2016
  • Rock salt is a near-perfect material for gas storage repositories due to its excellent ductility and low permeability. Gas storage in rock salt layers during gas injection and gas production causes the stress redistribution surrounding the cavity. The triaxial cyclic loading and unloading tests for rock salt were performed in this paper. The elastic-plastic deformation behaviour of rock salt under cyclic loading was observed. Rock salt experienced strain hardening during the initial loading, and the irreversible deformation was large under low stress station, meanwhile the residual stress became larger along with the increase of deviatoric stress. Confining pressure had a significant effect on the unloading modulus for the variation of mechanical parameters. Based on the theory of elastic-plastic damage mechanics, the evolution of damage during cyclic loading and unloading under various confining pressure was described.

염해 및 한발에 대한 보리의 생화학적 반응 - 항산화효소 활성 및 아미노산 함량의 변화 (Differentiation of Barley Response to Drought and Salt Stress in Antioxidant Enzyme Activity and Free Amino Acid Content)

  • 김대욱;허화영;서세정;이영호;김시주
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.133-138
    • /
    • 2006
  • 본 연구는 삼투포텐셜이 동일한 NaCl과 PEG6000 용액을 사용하여 염해와 한발에 대한 보리의 생화학적 반응을 검토하였으며 시험결과를 요약하면 다음과 같다. 1. 보리의 지상부 생육 및 보리 잎의 상대수분함량은 염해보다 한발에 의해서 더욱 감소하였다. 2. 과산화수소의 발생은 염해처리 후 6일에 한발보다 27.5% 많았으며, 영해처리 후 4일에 나타난 APX, CAT 및 GR의 활성은 한발처 리보다 각각 12.6%, 27.9%, 23.3% 높았다. 한편, 보리의 경우 CAT의 활성은 한발보다 염해조건에서 더욱 신속하게 유도되는 것으로 나타났다. 3. 아미노산 함량의 변화는 염해 및 한발처리에 의해서 서로 다른 양상을 보였다. 특히 glycine, arginine 및 GABA의 함량은 한발처리에서 더욱 증가하였으나, proline의 함량은 염해처리에서 크게 증가하였다. 4. 본 연구를 통해서 보리의 항산화효소 활성 및 아미노산 함량이 염해와 한발에 의해서 상이하게 조절되는 것이 확인되었다. 이러한 결과들은 염해에 대한 보리의 특이적인 반응지표가 될 수 있을 것으로 생각되었다.

Salt tolerant rice cv Nona Bokra chromosome segments introgressed into cv Koshihikari improved its yield under salinity through retained grain filling

  • Mitsuya, Shiro;Murakami, Norifumi;Sato, Tadashi;Kano-Nakata, Mana;Yamauchi, Akira
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.238-238
    • /
    • 2017
  • Salt stress is one of the deteriorating abiotic stresses due to the climate change, which causes over-accumulation of $Na^+$ and $Cl^-$ ions in plants and inhibits the growth and yield of rice especially in coastal Southeastern Asia. The yield components of rice plant (panicle number, spikelet number per panicle, 1000-grain weight, % of ripened grains) that are majorly affected by salt stress vary with growth stages at which the plant is subjected to the stress. In addition, the salt sensitivity of each yield component differs among rice varieties even when the salt-affected growth stage was same, which indicates that the physiological mechanism to maintain each yield component is different from each other. Therefore, we hypothesized that rice plant has different genes/QTLs that contribute to the maintenance of each yield component. Using a Japanese leading rice cultivar, Koshihikari, and salt-tolerant Nona bokra's chromosome segment substitution lines (CSSLs) with the genetic background of Koshihikari (44 lines in total) (Takai et al. 2007), we screened higher yielding CSSLs under salinity in comparison to Koshihikari and identified the yield components that were improved by the introgression of chromosome segment(s) of Nona bokra. The experiment was conducted in a salinized paddy field. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for one month, and then the field was salinized by introducing saline water to maintain the surface water at 0.4% salinity until harvest. The experiments were done twice in 2015 and 2016. Although all the CSSLs and Koshihikari decreased their yield under salinity, some CSSLs showed relatively higher yield compared with Koshihikari. In Koshihikari, all the yield components except panicle number were decreased by salinity and % of ripened grains was mostly reduced, followed by spikelet number per panicle and 1000-grain weight. When compared with Koshihikari, keeping a higher % of ripened grains under salinity attributed to the significantly greater yield in one CSSL. This indicated that the % of ripened grains is the most sensitive to salt stress among the yield components of Koshihikari and that the Nona bokra chromosome segments that maintained it contributed to increased yield under salt stress. In addition, growth analyses showed that maintaining relative growth rate in the late grain filling stage led to the increased yield under salt stress but not in earlier stages.

  • PDF

Arabidopsis Transcription Factor ANAC032 Enhances Salinity and Drought Tolerance

  • Netty Ermawati;Sang Gon Kim;Joon-Yung Cha;Daeyoung Son
    • 한국초지조사료학회지
    • /
    • 제43권1호
    • /
    • pp.42-49
    • /
    • 2023
  • The plant-specific NAC transcription factors control various biological processes, including plant development and stress responses. We have isolated an ANAC032 gene, one of the NAC transcription factor family, which was highly activated by multi-abiotic stresses, including high salt and drought in Arabidopsis. Here, we generated transgenic plants constitutively expressing ANAC032 and its knockout to identify the functional roles of ANAC032 in Arabidopsis under abiotic stress responses. The ANAC032-overexpressing plants showed enhanced tolerance to salinity and drought stresses. The anac032 knockout mutants were observed no significant changes under the high salt and drought conditions. We also monitored the expression of high salt and drought stress-responsive genes in the ANAC032 transgenic plants and anac032 mutant. The ANAC032 overexpression upregulated the expression of stress-responsive genes, RD29A and ERD10, under the stresses. Thus, our data identify that transcription factor ANAC032 plays as an enhancer for salinity and drought tolerance through the upregulation of stress-responsive genes and provides useful genetic traits for generating multi-abiotic stress-tolerant forage crops.

Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

  • Kim, Kangmin;Jang, Ye-Jin;Lee, Sang-Myeong;Oh, Byung-Taek;Chae, Jong-Chan;Lee, Kui-Jae
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.109-117
    • /
    • 2014
  • Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

The ACC deaminase from rhizobateria promoted resistance of salininty stress in seedling and growth of plant

  • Soh, Byoung-Yul;Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Lee, Kui-Jae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.17-17
    • /
    • 2010
  • Rhizobacteria are a diverse group of free-living soil bacteria that live in plant rhizosphere and colonized the root system. Plant growth-promoting rhizobacteria (PGPR) possessing ACC deaminase (ACCD) can reduce ACC and ethylene in plant tissue and mediated the growth of plants under various stresses including salt stress. ACCD decrease ethylene levels in plant tissue that produce high levels of ethylene in tissue via elevated levels of ACC under salt stress. We selected strains of Pseudomonas sp. possessing ACCD activity for their ability to promote plant growth under salt stress from soil sample collected at Byeonsan, Jeonbuk, South Korea. The Pseudomonas strains possessing ACCD increased the rate of the seedling and growth of chinese cabbage seeds under salt stress. We cloned ACCD gene from P.fluorescens and expressed recombinant protein in Escherichia coli. The active form of recombinant ACCD converted ACC to a-ketobutyrate. The in vivo treatment of recombinant ACCD itself increase the rate of the seedling and growth of Chinese cabbage seeds under salt stress. The polyclonal P.fluorescens anti-ACCD antibody specifically reacted with ACCD originated from Pseudomonas. This indicates that the antibody might act as an important indicator for ACCD driven from Pseudomonas exhibiting plant growth-promoting activity. This study will be useful for identification of newly isolated PGPR containing ACCD and exploioting the ACCD activity from PGPR against various biotic and abiotic stresses.

  • PDF

Protein Profiles in Response to Salt Stress in Seedling of Salt Tolerant Rice Mutants

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Lee, Young-Keun;Kang, Si-Yong
    • 방사선산업학회지
    • /
    • 제6권2호
    • /
    • pp.129-138
    • /
    • 2012
  • Proteomic analysis was performed in order to identify proteomic changes by salt stress between the Japonica cv. Donganbyeo (WT) and two salt-tolerant (ST) mutant lines by using the SDS-PAGE and 2-DE. Two salt tolerant rice mutant lines, ST-87 and ST-301, were selected by in vitro mutagenesis with gamma-ray. Three-week-old seedlings were treated with 171 mM NaCl for 7 days. In the SDS-PAGE, three proteins with molecular weights of 27, 46 and 58 kDa were highly increased under salt treatment. Total proteins from shoots of both WT and ST-lines were separated by two-dimensional gel electrophoresis. In 2-DE, 201, 226, 217 and 213 protein spots were detected in the untreated-or treated-WT and untreated- or treated-ST-87, respectively. Of theses, 17 and 10 protein spots were up- and down-regulated under salt stress in the WT, respectively. While, 16 and 8 protein spots were up- and down-regulated under salt stress in the ST-87, respectively, compared with the untreated plants. High intensity or de novo synthesized proteins were analyzed by MALDI-TOF/MS analysis.

Study on the mechanical properties test and constitutive model of rock salt

  • Zhao, Baoyun;Huang, Tianzhu;Liu, Dongyan;Liu, Yang;Wang, Xiaoping;Liu, Shu;Yu, Guibao
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.291-298
    • /
    • 2019
  • In order to study the mechanical properties of rock salt, triaxial compression tests under different temperatures and confining pressure are carried out on rock salt specimens, the influence of temperature and confining pressure on the mechanical properties of rock salt was studied. The results show that the temperature has a deteriorative effect on the mechanical properties of rock salt. With the increase of temperature, the peak stress of rock salt decreases visibly; the plastic deformation characteristics become much obvious; the internal friction angle increases; while the cohesion strength decreases. With the increase of confining pressure, the peak stress and peak strain of rock salt will increase under the same temperature. Based on the test data, the Duncan-Chang constitutive model was modified, and the modified Duncan-Chang rock salt constitutive model considering the effect of temperature and confining pressure was established. The stress-strain curve calculated by the modified model was compared with the stress-strain curve obtained from the test. The close match between the test results and the model prediction suggests that the modified Duncan-Chang constitutive model is accurate in describing the behavior of rock slat under different confining pressure and temperature conditions.

A transcription factor "OsNAC075" is essential for salt resistance in rice (Oryza sativa L.)

  • Jung, Yu-Jin;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.94-104
    • /
    • 2011
  • Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, we systematically screened salt sensitive rice mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on the salt sensitive mutant line, designated SSM-1. A gene encoding a NAC transcription factor homologue was disrupted by the insertion of a Ds transposon into SSM-1 line. The OsNAC075 gene (EU541472) has 7 exons and encodes a protein (486-aa) containing the NAC domain in its N-terminal region. Sequence comparison showed that the OsNAC075 protein had a strikingly conserved region at the N-terminus, which is considered as the characteristic of the NAC protein family. OsNAC075 protein was orthologous to Arabidopsis thaliana ANAC075. Phylogenetic analysis confirmed OsNAC075 belonged to the OsNAC3 subfamily, which plays an important role in response to stress stimuli. RT-PCR analysis showed that the expression of OsNAC075 gene was rapidly and strongly induced by stresses such as NaCl, ABA and low temperature ($4^{\circ}C$). Our data suggest that OsNAC075 holds promising utility in improving salt tolerance in rice.

초기 염류 스트레스 반응 인삼 잎 단백질체 분석 (Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves)

  • 김소운;민철우;;조익현;방경환;김영창;김기홍;김선태
    • 한국약용작물학회지
    • /
    • 제22권5호
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.