• Title/Summary/Keyword: SA-LIGBT

Search Result 5, Processing Time 0.025 seconds

A New Snap-back Suppressed SA-LIGBT with Gradual Hole Injection (점진적인 홀의 주입을 통해 스냅백을 억제한 새로운 구조의 SA-LIGBT)

  • Jeon, Jeong-Hun;Lee, Byeong-Hun;Byeon, Dae-Seok;Lee, Won-O;Han, Min-Gu;Choe, Yeol-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.113-115
    • /
    • 2000
  • The gradual hole injection LIGBT (GI-LIGBT) which employs the dual gate and the p+ injector, was fabricated for eliminating a negative resistance regime and reducing a forward voltage drop in SA-LIGBT. The elimination of the negative resistance regime is successfully achieved by initiating the hole injection gradually. Furthermore, the experimental results show that the forward voltage drop of GI-LIGBT decreases by lV at the current density of 200 $A/cm^2$, when compared with that of the conventional SA-LIGBT. It is also found that the improvement in the on-state characteristics can be obtained without sacrificing the inherent fast switching characteristics of SA-LIGBT.

  • PDF

A Study on the Forward I-V Characteristics of the Separated Shorted-Anode Lateral Insulated Gate Bipolar Transistor (분리된 단락 애노드를 이용한 수평형 SA-LIGBT 의 순방향 전류-전압 특성 연구)

  • Byeon, Dae-Seok;Chun, Jeong-Hun;Lee, Byeong-Hun;Kim, Du-Yeong;Han, Min-Ku;Choi, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.161-166
    • /
    • 1999
  • We investigate the device characteristics of the separated shorted-anode LIGBT (SSA-LIGBT), which suppresses effectively the negative differential resistance regime, by 2-dimensional numerical simulation. The SSA-LIGBT increases the pinch resistance by employing the highly resistive n-drift region as an electron conduction path instead of the lowly resistive n buffer region of the conventional SA-LIGBT. The negative differential resistance regime of the SSA-LIGBT is significantly suppressed as compared with that of the conventional SA-LIGBT. The SSA-LIGBT shows the lower forward voltage drop than that of the conventional SA-LIGBT.

  • PDF

Numerical Analyses on Snapback-Free Shorted-Anode SOI LIGBT by using a Floating Electrode and an Auxiliary Gate (플로우팅 전극과 보조 게이트를 이용하여 스냅백을 없앤 애노드 단락 SOI LIGBT의 수치 해석)

  • O, Jae-Geun;Kim, Du-Yeong;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.73-77
    • /
    • 2000
  • A dual-gate SOI SA-LIGBT (shorted-anode lateral insulated gate bipolar transistor) which eliminates the snapback effectively is proposed and verified by numerical simulation. The elimination of the snapback in I-V characteristics is obtained by initiating the hole injection at low anode voltage by employing a dual gate and a floating electrode in the proposed device. For the proposed device, the snapback phenomenon is completely eliminate, while snapback of conventional SA-LIGBT occurs at anode voltage of 11 V. Also, the drive signals of two gates have same polarity by employing the floating electrode, thereby requiring no additional power supply.

  • PDF

A New Dual-Gate SOI LIGBT by employing Separated Shorted Anode and Floating Ohmic Contact (분리된 단락애노드와 플로팅오믹접합을 사용한 새로운 SOI 이중게이트 수평형 절연게이트바이폴라트랜지스터)

  • Ha, Min-Woo;Lee, Seung-Chul;Oh, Jae-Keun;Jeon, Byung-Chul;Han, Min-Koo;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1343-1345
    • /
    • 2001
  • 본 논문은 스냅백을 효과적으로 제거하고 순방향 전압 강하를 줄이는 새로운 구조의 분리된 이중 게이트 SOI SA-LIGBT를 제안하였다. 제안된 소자는 분리된 단락 애노드와 플로팅 오믹 접합의 적용을 통해 스냅백이 성공적으로 제거되었고, 순방향전압강하는 전류밀도가 100A/$cm^2$일 때 기존의 SA-LIGBT에 비교해서 2V 감소된다. 또한 턴-오프 특성도 분리된 단락 애노드를 적용하였기 때문에 SA-LIGBT보다 개선되었다.

  • PDF

Trench Shorted Anode LIGBT on 501 Substrates (트랜치 구조를 갖는 단락 애노드 SOI LIGBT)

  • Choe, Seung-Pil;Ha, Min-U;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.196-198
    • /
    • 2002
  • A trench shorted anode LIGBT (TSA-LIGBT) which decreases the device area and the forward voltage drop has been proposed and verified by 2D device simulations. The trench located in the shorted anode would form the shorted anode. The simulation results show that TSA-LIGBT decrease the device area by about 20% and the forward voltage drop by over 75% compared with the conventional ones. Also the troublesome negative differential resistance (NDR) regime has been eliminated successfully in the TSA-LIGBT.