• Title/Summary/Keyword: S. Cerevisiae

Search Result 927, Processing Time 0.027 seconds

Ethanol Production by the Mixed Culture of Some Aspergilli and Saccharomyces cerevisiae (효모와 고오지 곰팡이의 혼합배양에 의한 주정생산)

  • Choi, Byung-Kwon;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.696-699
    • /
    • 1990
  • Some mixed culture systems consisting of koji molds and yeast were tested for the ethanol production by simultaneous saccharification and fermentation using polished rice as the substrate. Aspergillus shirousamii showed the highest ethanol production in the mixed culture with Saccharomyces cerevisiae on steamed rice added with 150 ml water in 250 ml Erlenmeyer flask. The optimum initial pH, temperature and specific surface for the ethanol production in this system were 6.5, $30^{\circ}C$, and 0.1, respectively. Under this condition, 12.9% ethanol was produced with inoculation with $5{\times}10^2$ conidia/ml of A. shirousamii and $5{\times}10^6\;cells/ml$ of S. cerevisiae in 10 days.

  • PDF

Protoplast Formation of the Amylolytic Yeast and Saccharomyces cerevisiae by Snail Lytic Enzyme from Helix pomatia (Snail Lytic Enzyme에 의한 전분리용성 효모 및 Saccharomyces cerevisiae의 원형질체 형성)

  • 구영조;박완수;신동화;유태종
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.137-144
    • /
    • 1985
  • Studies were conducted on the conditions for preparation of yeast protoplasts utilizing Hansenula anomala var. anomala FRI YO-32 as well as Saccharomyces cerevisiae KFCC 32356 and a lytic enzyme from the snail Helix pomatia. The cell wails of the strain FRI YO-32 and S cerevisiae were found to be resistant to activity of the snail lytic enzyme if they were not treated with thiol compounds. Dithiothreitol was found to be more effective than 2-mercaptoethanol, but the latter was considered to be practical. As factors influencing the formation of yeast protoplast, it was considered to be concentration and incubation time of 2-mercaptoethanol or the lytic enzyme, growth stages in yeast cultivation, initial number of yeast cells, and concentration of osmotic stabilizer (KCI). Optimum conditions for the preparation of yeast protoplasts were determined.

  • PDF

Enhancing Protein Content in Wild-Type Saccharomyces cerevisiae via Random Mutagenesis and Optimized Fermentation Conditions

  • Sang-Hun Do;Tae-Gi Lee;Sun-Ki Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1912-1918
    • /
    • 2024
  • Single-cell protein (SCP) derived from microorganisms is widely recognized as a viable alternative protein source for the future. Nevertheless, the commercialization of yeast-based SCP is hampered by its relatively low protein content. Therefore, this study aimed to enhance the protein content of Saccharomyces cerevisiae via random mutagenesis. To achieve this, S. cerevisiae KCCM 51811, which exhibited the highest protein concentration among 20 edible S. cerevisiae strains, was selected as a chassis strain. Subsequently, a KCCM 51811 mutant library was constructed (through UV irradiation) and screened to isolate mutants exhibiting high protein content and/or concentration. Among the 174 mutant strains studied, the #126 mutant exhibited a remarkable 43% and 36% higher protein content and concentration, respectively, compared to the parental strain. Finally, the #126 mutant was cultured in a fed-batch system using molasses and corn-steep liquor, resulting in a protein concentration of 21.6 g/l in 100 h, which was 18% higher than that produced by the parental strain. These findings underscore the potential of our approach for the cost-effective production of food-grade SCP.

Reduction in the contents of acetaldehyde, methanol and fusel alcohols in the Muscat Bailey A wine fermented by Korean indigenous sugar-tolerant yeasts Saccharomyces cerevisiae S13 and D8 (토착형 아황산 및 당 내성 효모 Saccharomyces cerevisiae S13과 D8에 의한 Muscat Bailey A 포도주의 아세트알데히드, 메탄올 및 고급알코올의 감소 효과)

  • Kim, Mi-Sun;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.851-858
    • /
    • 2014
  • Muscat Bailey A (MBA) wine was fermented using the indigenous Korean Saccahromyces cerevisiae strains S13 and D8, and the fermentation characteristics were compared with those of S. cerevisiae W-3, an industrial wine yeast. The strains S13 and D8 showed delayed alcohol fermentation compared with the W-3 strain, but the final alcohol contents of the S13 and D8 wines after fermentation were similar to those of the W-3 wine. The S13 wine showed significantly lower malic-acid content than the W-3 wine, but the D8 wine showed a similar level. Both the wines fermented using the S13 and D8 strains showed significantly lower acetaldehyde, methanol, and fusel oil contents, including n-propanol, iso-butyl alcohol, and iso-amyl alcohol, compared to the W-3 wine. Especially, the methanol content was 98.6 mg/L in the S13 wine and 112.0 mg/L in the D8 wine, which were much lower than 192.8 mg/L in the W-3 wine. The S13 wine obtained the highest score in terms of color among the three wines in the sensory evaluation, with lower Hunter's L, a, and b values compared to the W-3 wine.

Characteristics of Ice Wine Fermentation of Freeze-Concentrated Campbell Early Grape Juice by S. cerevisiae S13 and D8 Isolated from Korean Grapes (포도로부터 분리한 S. cerevisiae S13 및 D8에 의한 캠벨 얼리 동결농축 과즙의 아이스와인 발효 특성)

  • Hwang, Sung-Woo;Hong, Young-Ah;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.811-816
    • /
    • 2011
  • Cryoextraction (a freeze concentration using an instrument) can increase the sugar concentration in grape juice by reducing its water content, similar to the natural freezing of grapes for natural ice wine. In this study, fermentation of freeze-concentrated Campbell Early grape (Vitis labruscana) juice to 36 $^{\circ}Bx$ was carried out using Saccharomyces cerevisiae strains D8 and S13 isolated from Korean grapes. During the fermentation, strains S13 and D8 showed rapid sugar reduction and alcohol production compared with S. cerevisiae Fermivin$^{(R)}$ used as a control. After nine-day fermentation, the residual sugar contents were lower in W13(9.77%) and D8 wine(9.07) than that in Fermivin$^{(R)}$ wine(14.0%). Total acid content was high in the D8>S13>Fermivin$^{(R)}$ wine, in that order. The acetaldehyde content was highest in the D8 wine and lowest in the Fermivin$^{(R)}$ wine, among the three. The methanol content was slightly higher in the S13 and D8 wines than in the Fermivin$^{(R)}$ wine. In the sensory evaluation, the S13 wine exhibited the highest score in flavor and taste among the three wines. Both the two S13 and D8 wines exhibited higher scores than Fermivin$^{(R)}$ wine in overall preference.

Antioxidant Activity and Main Volatile Flavor Components of Mulberry Wine Fermented with Saccharomyces cerevisiae B-8 (토종발효미생물을 이용한 오디 발효주의 항산화 활성 및 향기성분 분석)

  • Chae, Kyu Seo;Jung, Ji Hye;Yoon, Hae Hoon;Son, Rak Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1017-1024
    • /
    • 2014
  • This study was carried out to develop mulberry wines fermented with traditional microorganisms (Saccharomyces cerevisiae B-8). S. cerevisiae B-8 is a traditional fermentation microorganism isolated from domestically grown Rubus occidentalis. Each S. cerevisiae B-8 and Fermivin was inoculated into mulberry up to $1{\times}10^9$ CFU/kg, followed by incubation at $25^{\circ}C$ for 10 days. Mulberry fermented with S. cerevisiae B-8 (MBB) had a high alcohol content (16.47%), and the fermentation rate of MBB was faster than that of mulberry fermented with Fermivin (MBF). The total polyphenol and flavonoid contents of MBB were higher than those of MBF. DPPH radical scavenging activity of MBB was as high as that of MBF. ABTS radical scavenging activity of MBF was higher than those of MBB and mulberry juice (MBJ). In addition, reducing power of MBB was much higher than other samples. Flavor constituents of the two fermented wines were analyzed by gas chromatography and mass spectrometry. Twenty-three compounds from the sample were separated and identified as fifteen esters, six alcohols, an aldehyde, and an acetate. Particularly, tetradecanoic acid, ethyl ester of orris and violet flavor were ten times more abundant in MBB than in MBF. Several ester components were two times more abundant in MBB than in MBF. In conclusion, current findings indicate that MBB might have better antioxidant activities with flavor, which contributes to improved wine production with high quality and function.

Nucleotide Analysis of Phaffia rhodozyma DNA Fragment That Functions as ARS in Saccharomyces cerevisiae

  • Chung, Hee-Young;Hong, Min-Hee;Chun, Young-Hyun;Bai, Suk;Im, Suhn-Young;Lee, Hwanghee-Blaise;Park, Jong-Chun;Kim, Dong-Ho;Chun, Soon-Bai
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.650-655
    • /
    • 1998
  • The chromosomal DNA fragment from Phaffia rhodozyma CBS 6938 which is able to autonomously replicate in the yeast Saccharomyces cerevisiae was cloned on an integrative URA3 plasmid. Its minimal fragment exhibiting autonomously replicating activiy in the S. cerevisiae gave a higher frequency transformation efficiency than that found for centromere-based plasmid, and enabled extrachromosoma1ly stable transmission of the plasmids in one copy per yeast cell under non-selective culture condition. The 836-bp DNA element lacked an ORF and did not contain any acceptable match to an ARS core consensus. Sequence analysis, however, displayed a cluster of three hairpin-Ioop-sequences with individual $\triangle {G_{25}}^{\circ}C$ free energy value of -10.0, -17.5, and -17.0 kcal. $mor^{-l}$as well as a 9-bp sequence with two base pair mismatches to the S. cerevisiae/E. coli gyrase-binding site. This 836-bp sequence also included one 7-bp sequence analogous to the core consensus of centromeric DNA element III (CDEIII) of S. cerevisiae, but CDEIII-like 7 bp sequence alone did not give a replicative function in this yeast.

  • PDF

Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain

  • Lim, Seok-Hwan;Lee, Hong-Weon;Sok, Dai-Eun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1529-1533
    • /
    • 2010
  • The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 was overexpressed by using the GAL10 promotor in a ${\Delta}ga180$ strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to a mating factor ${\alpha}$ signal sequence for secretory expression. Use of the ${\Delta}ga180$ strain allowed for the galactose-free induction of inulinase expression using a glucose-only medium. Shake-flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the ${\Delta}ga180$ strain improved the expression of inulinase in the recombinant S. cerevisiae in both aerobic and anaerobic conditions by about 2.9- and 1.7-fold, respectively. A 5-l fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at the $OD_{600}$ of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5-l scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and with the pH controlled at 5.0. The temperature was maintained at $30^{\circ}C$ and $37^{\circ}C$, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/l, respectively.

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei;Huang, Xiaowei;Zhao, Na;Gao, Feng;Lu, Qian;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1630-1636
    • /
    • 2010
  • During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Reduction of Trimethylamine by Saccharomyces cerevisiae Isolated from Fermented Food (발효식품에서 분리된 Saccharomyces cerevisiae를 이용한 Trimethylamine 저감화)

  • Park, Seul-Ki;Lee, Jae-Hwa;Jo, Du-Min;Kang, Min-Gyun;Jang, Yu-Mi;Cho, Yeon-jin;Hong, Dong-lee;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • Trimethylamine (TMA) is a nitrogen-based aliphatic organic compound. It is a major odorous component of fish and fishery products and is often used as an indicator of fish quality. The efficacy of TMA removal by various yeast strains was investigated. The five yeast strains found to be most effective in removing TMA were isolated from fermented foods and were identified as Saccharomyces cerevisiae based on biochemical and 18S rRNA sequence analyses. These strains were designated as S. cerevisiae SK1511, SK1512, SK1513, SK1514 and SK1515. Yeast cultures were treated with a TMA solution (0.3%, v/v), and the level of TMA reduction was analyzed by headspace gas chromatography. The five S. cerevisiae strains removed 32.02-50.34% of the TMA from the solution. This study is the first to demonstrate TMA reduction by microbial treatment.