• Title/Summary/Keyword: S-R Variation

Search Result 950, Processing Time 0.036 seconds

Long-Term Variation of the Spin Period of a Magnetic Cataclysmic Variable, MU Camelopardalis

  • Yun, A-Mi;Kim, Yong-Gi;Choi, Chul-Sung
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2011
  • Results of an analysis of 11 nights of R-filter CCD photometry data of an intermediate polar MU Camelopardalis (MU Cam) obtained at the Korean 1.0 m telescope at Mt. Lemmon are reported. After checking the spin period with our data, $P_{spin}=0.^d01373801(59)$, we compiled the reported data of maxima timing and an O-C diagram analysis has been carried out to understand the spin period variation. A significant spin period variation was detected, and fitting the O-C points to a cubic parabola led to an ephemeris of $BJD_{max}=2453682.4178(94)+0.0137380(13)E-2.07(55){\times}10^{-11}E^2+2.28(52){\times}10^{-15}E^3$. The torque experienced by the magnetic compact star accreting in a disk is estimated as ${\tau}{\approx}1.815{\times}10^{35}gcm^2/s^2$ in a simple approximation in order to show how important monitoring the period variation is. Thus we conclude that monitoring the long-term spin period variation will help to understand the physical condition of magnetic compact stars.

The Effects of Various Factors on Milk Yield and Variation in Milk Yield Between Milking, Milk Components, Milking Duration, and Milking Flow Rate in Holstein Dairy Cattle (착유우의 연속유량, 유량변이, 유성분, 체세포수, 비유지속시간, 비유속도에 대한 산차, 착유시간, 유기 및 착유간격의 효과)

  • Ahn, B.S.;Jeon, B.S.;Baek, K.S.;Park, S.J.;Lee, H.J.;Lee, W.S.;Kim, S.B.;Park, S.B.;Kim, H.S.;Ju, J.C.;Khan, M. A.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.919-924
    • /
    • 2005
  • This study was carried out to estimate the effects of parity, milking time, milking interval and days in milk(DIM) on variation in milk yield between consecutive milkings(am to pm to am), morning and evening milk yield and its components, somatic cell counts(SCS), milking duration, milk flow rate and peak milk flow in Holstein dairy cattle. Records from one hundred and twenty two heads of Holstein cattle at National Livestock Research Institute, Korea were used for this study from July 1 to August 8, 2005. The experimental herd had average 1.6$\pm$0.9 parities, 199.8$\pm$109.1 DIM and 12.26$\pm$4.06kg milk yields at each milking. Milking yield, percent milk fat and SNF, milking duration and average milk flow were significantly varied by parity, milking time and DIM. Percent milk protein and lactose were varied by parity and DIM, however SCS and average milk flow were affected by parity and milking time. Milking interval significantly affected the consecutive, morning and evening milk yield and average milk flow. However, MUN was not affected by parity, milking time, DIM and milking interval. Milk yield was decreased with increasing parity. Milk yield in the morning was higher than that of in the evening. Milk yield between consecutive milking was not affected by parity, however, affected by milking time. Percent milk Fat, SNF and SCS were higher at in evening milk than those of in morning milk. Milk protein, lactose, SNF, SCS, milking duration and peak milk flow rate were influenced by parity. This study suggested that milk yield variation between consecutive milking, milking flow rate, and milking duration could be important traits for enhancing Holstein cattle productivity however, and more study is needed to estimate genetic parameters for such traits.

Environmental Efficiency Analysis of an Enclosed Experimental Broiler House (실험 무창육계사의 환경효율 분석)

  • Hwangbo, J.;Song, J.I.;Cho, S.B.;Chung, K.H.;Lee, B.S.;Nam, B.S.;Chung, C.S.;Chung, I.B.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.475-482
    • /
    • 2002
  • The experiment was conducted to evaluate a ventilation system, which was devised to encourage farmers to use the enclosed poultry housing system. The study was observed in the National Livestock Research Institute from May 9 to May 30 in 2002. The main results of the experiment are as follows: 1. Although the outside temperature of the enclosed poultry house was 9.6 ${\sim}$ 21.2$^{\circ}C$ with 11.6$^{\circ}C$ variation, the house with an excellent heat insulation was maintained at 32${\sim}$33$^{\circ}C$ in a variation of 2$^{\circ}C$ which is within the range of the optimal temperature for broiler, being aided with two small electric heaters. 2. The average of air flow rates of the upper, middle and low parts of the room in the broiler house were detected at 0.57, 0.22 and 0.04 m/sec, respectively. The air flow in the whole room was distibuted uniformly by a perforated duct. In conclusion, heat and humidity could be controlled without any problem in this enclosed housing system. Especially, air flow in all parts of the room was detected in uniform rates, resulting in the better ventilation performance with air inhalation through the duct and air exhaust through the side walls of the house.

A Study on Improvement for Fishing Gear and Method of Pound Net - I - Net Shapes of the Commerical Net in the Flow - (정치망 어구어법의 개발에 관한 연구-I - 현용어구의 흐름에 대한 형상 변화 -)

  • Yun, Il-Bu;Lee, Ju-Hee;Kwon, Byeong-Guk;Cho, Young-Bok;Yoo, Jae-Bum;Kim, Seong-Hun;Kim, Boo-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.268-281
    • /
    • 2004
  • A study was carried out in order to estimate the deformation of the pound net according to the current by the model test in the circulating water channel. The tension of the frame rope and the variation of net shape were measured to investigate the deforming of the model pound net in the flow. The results are obtained as follows; 1. The experimental equation between tensions (R) of the frame rope and velocity (ν)was found to be R=$19.58v^{1.98}$($r^2$=0.98) in case of the upperward flow with fish court net and R=$26.90v^{1.72}$($r^2$=0.95)at the upperward flow with bag net according to the velocity from 0.0m/s to 0.6m/s, respectively. 2. As the variation of flow speed inside of the model net was gradually decreased according as which is passed through netting panels, in case of the upperward flow with fish court net, the flow speed was about 70% of initial flow speed at 0.1m/s, 60% at 0.2m/s, 50% at 0.3m/s and 40% 0.4~0.6m/s at the measurement point(h) inside of the first bag net, respectively. In case of the upperward flow with bag net, as the flow speed was steeply decreased according as which if passed through the second bag net, it was 30~60% of the initial flow speed and was 20~30% inside of the first bag net and was about 10~20% inside of the inclined passage net. 3. In case of the upperward flow with fish court net, the variation of deformed angle of fish court net was from 0$^{\circ}$ to 70$^{\circ}$and that of inclined passage net was from 0$^{\circ}$ to 63$^{\circ}$and that of the second bag net was from 0$^{\circ}$ to 47$^{\circ}$ . 4. In case of the upperward flow with fish court net, the variation of deformed angle of the second bag net was changed from 0$^{\circ}$ to 70$^{\circ}$and that of the inclined passage net was from 0$^{\circ}$ to 55$^{\circ}$ and that of the fish court net was from 0$^{\circ}$ to 50$^{\circ}$. The depth ratio of the first bag net was changed from 0% to 35% and that of the second bag net was from 0% to 20% and that of the inclined passage net was from 0% to 35%. In the flow speed 0.5m/s, the inclined passage net was raised up to the entry of the bag net and then prevented it more over 90%. 5. To be increased the opening volume of pound net, it needs to attach the added weight outside of the fish court net, inclined passage net and bag net. At the same time, it needs to adjust the tension of the twine for maintenance of the shape.