• Title/Summary/Keyword: S-Parameters

Search Result 13,608, Processing Time 0.049 seconds

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Evaluation of waterlogging tolerance using chlorophyll fluorescence reaction in the seedlings of Korean ginseng (Panax ginseng C. A. Meyer) accessions (엽록소 형광반응을 이용한 인삼 유전자원의 습해 스트레스 평가)

  • Jee, Moo Geun;Hong, Young Ki;Kim, Sun Ick;Park, Yong Chan;Lee, Ka Soon;Jang, Won Suk;Kwon, A Reum;Seong, Bong Jae;Kim, Me-Sun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.240-249
    • /
    • 2022
  • Measuring chlorophyll fluorescence (CF) is a useful tool for assessing a plant's ability to tolerate abiotic stresses such as drought, waterlogging and high temperature. Korean ginseng is highly sensitive to water stress in paddy fields. To evaluate the possibility of non-destructively diagnosing waterlogging stress using chlorophyll fluorescence (CF) imaging techniques, we screened 57 ginseng accessions for waterlogging tolerance. To evaluate waterlogging tolerance among the 2-year-old Korean ginseng accessions, we treated ginseng plants with water stress for 25 days. The physiological disorder rate was characterized through visual assessment (an assigned score of 0-5). The physiological disorder rates of Geumjin, Geumsun and GS00-58 were lower than that of other accessions. In contrast, lines GS97-62, GS97-69 and GS98-1-5 were deemed susceptible. Root traits, chlorophyll content and the reduction rates decreased in most ginseng accessions. Further, these metrics were significantly lower in susceptible genotypes compared to resistant ones. All CF parameters showed a positive or negative response to waterlogging stress, and this response continuously increased over the treatment time among the genotypes. The CF parameter Fv/Fm was used to screen the 57 accessions, and the results showed clear differences in Fv/Fm between the susceptible and resistant genotypes. Susceptible genotypes had an especially low Fv/Fm value of less than 0.8, reflecting damage to the reaction center of photosystem II. It is concluded that Fv/Fm can be used as a CF parameter index for screening waterlogging stress tolerance in ginseng genotypes.

Comparison of Egg Productivity, Egg Quality, Blood Parameters and Pre-Laying Behavioral Characteristics of Laying Hens and Poor Laying Hens (산란계와 과산계의 난생산성, 계란품질, 혈액 특성 및 산란 전 행동 특성의 비교)

  • Woo-Do, Lee;Hyunsoo, Kim;Jiseon, Son;Eui-Chul, Hong;Hee-Jin, Kim;Hwan-Ku, Kang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.189-197
    • /
    • 2022
  • This study was conducted to compare the egg productivity, egg quality, and blood characteristics of laying hens with different laying rates, and the frequency and cumulative duration of the sitting behavior observed before laying was investigated. Twelve 45-week-old Hy-Line Brown laying hens were randomly assigned to two treatment groups with three replicates. Treatment groups were classified as layers laying over 80%(high egg performance layers; HEP) and layers laying below 50%(poor egg performance layers; PEP). The experiment lasted 4 weeks. HEP showed higher hen-house egg production ratio and egg mass and lower feed conversion ratio(FCR) (P<0.05) compared with PEP, although egg weight was higher in PEP (P<0.05). In terms of egg quality, PEP showed differences in eggshell quality (eggshell color, eggshell thickness, and eggshell weight) (P<0.05). Additionally, HEP showed high triglycerides(TG), and PEP showed high alanine transaminase(ALT) level (P<0.05) in serum collected in the morning. In the afternoon, the HEP showed higher lactate dehydrogenase(LDH) levels (P<0.05). No differences in the Ca: P ratio were observed between layers with different laying rates. One hour before egg laying, HEP exhibited sitting behavior 4 times on average, each lasting 25 minutes. In conclusion, egg production and quality differ between HEP and PEP, and HEP showed frequent sitting behavior before egg laying. However, additional research is necessary to explore approaches other than specific behavioral observation to distinguish poor layers in the flock for application in farms.

Habitat Quality Analysis and Evaluation of InVEST Model Using QGIS - Conducted in 21 National Parks of Korea - (QGIS를 이용한 InVEST 모델 서식지질 분석 및 평가 - 21개 국립공원을 대상으로 -)

  • Jang, Jung-Eun;Kwon, Hye-Yeon;Shin, Hae-seon;Lee, Sang-Cheol;Yu, Byeong-hyeok;Jang, Jin;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.102-111
    • /
    • 2022
  • Among protected areas, National Parks are rich in biodiversity, and the benefits of ecosystem services provided to human are higher than the others. Ecosystem service evaluation is being used to manage the value of national parks based on objective and scientific data. Ecosystem services are classified into four services: supporting, provisioning, regulating and cultural. The purpose of this study is to evaluate habitat quality among supporting services. Habitat Quality Model of InVEST was used to analyze. The coefficients of sensitivity and habitat initial value were reset by reflecting prior studies and the actual conditions of protected areas. Habitat quality of 21 national parks except Hallasan National Park was analyzed and mapped. The value of habitat quality was evaluated to be between 0 and 1, and the closer it is to 1, the more natural it is. As a result of habitat quality analysis, Seoraksan and Taebaeksan National Parks (0.90), Jirisan and Odaesan National Parks (0.89), and Sobaeksan National Park (0.88) were found to be the highest in the order. As a result of comparing the area and habitat quality of 18 national parks except for coastal-marine national parks, the larger the area, the higher the overall habitat quality. Comparing the value of habitat quality of each zone, the value of habitat quality was high in the order of the park nature preservation zone, the park nature environmental zone, the park cultural heritage zone, and the park village zone. Considering both the analysis of habitat quality and the legal regulations for each zone of use, it is judged that the more artificial acts are restricted, the higher the habitat quality. This study is meaningful in analyzing habitat quality of 21 National Parks by readjusting the parameters according to the situation of protected areas in Korea. It is expected to be easy to intuitively understand through accurate data and mapping, and will be useful in making policy decisions regarding the development and preservation of protected areas in the future.

Estimation of Dynamic Material Properties for Fill Dam : II. Nonlinear Deformation Characteristics (필댐 제체 재료의 동적 물성치 평가 : II. 비선형 동적 변형특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Choo, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.87-105
    • /
    • 2009
  • Nonlinear dynamic deformation characteristics, expressed in terms of normalized shear modulus reduction curve (G/$G_{max}-\log\gamma$, G/$G_{max}$ curve) and damping curve (D-$\log\gamma$), are important input parameters with shear wave velocity profile ($V_s$-profile) in the seismic analysis of (new or existing) fill dam. In this paper, the reasonable and economical methods to evaluate the nonlinear dynamic deformation characteristics for core zone and rockfill zone respectively are presented. For the core zone, 111 G/$G_{max}$ curves and 98 damping curves which meet the requirements of core material were compiled and representative curves and ranges were proposed for the three ranges of confining pressure (0~100 kPa, 100 kPa~200 kPa, more than 200 kPa). The reliability of the proposed curves for the core zone were verified by comparing with the resonant column test results of two kinds of core materials. For the rockfill zone, 135 G/$G_{max}$ curves and 65 damping curves were compiled from the test results of gravelly materials using large scale testing equipments. The representative curves and ranges for G/$G_{max}$ were proposed for the three ranges of confining pressure (0~50 kPa, 50 kPa~100 kPa, more than 100 kPa) and those for damping were proposed independently of confining pressure. The reliability of the proposed curves for the rockfill zone were verified by comparing with the large scale triaxial test results of rockfill materials in the B-dam which is being constructed.

Applying Nonlinear Mixed-effects Models to Taper Equations: A Case Study of Pinus densiflora in Gangwon Province, Republic of Korea (비선형 혼합효과 모형의 수간곡선 적용: 강원지방 소나무를 대상으로)

  • Shin, Joong-Hoon;Han, Hee;Ko, Chi-Ung;Kang, Jin-Taek;Kim, Young-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.136-149
    • /
    • 2022
  • In this study, the performance of a nonlinear mixed-effects (NLME) model used to estimate the stem taper of Pinus densiflora in Gangwon Province was compared with that of a nonlinear fixed-effects (NLFE) model using several performance measures. For the diameters of whole tree stems, the NLME model improved on the performance of the NLFE model by 26.4%, 42.9%, 43.1%, and 0.9% in terms of BIAS, MAB, RMSE, and FI, respectively. For the cross-section areas of whole tree stems, the NLME model improved on the performance of the NLFE model by 67.7%, 44.7%, 45.8%, and 1.0% in terms of BIAS, MAB, RMSE, and FI, respectively. Based on the analysis of 12 relative height classes of tree stems, stem taper estimation performance was also reasonably improved by the NLME model, which showed better MAB, RMSE, and FI at every relative height class compared with those of the NLFE model. In some classes, the NLFE model had better BIAS than the NLME model (stem diameter: 0.05, 0.2, 0.3, and 0.8; stem cross-section area: 0.05, 0.3, 0.5, 0.6, and 1.0). However, the NLME model enhanced the performance of stem diameter and cross-section area estimations at the lowest stem part (0.2 m from the ground). Improvements for stem diameter in terms of BIAS, MAB, RMSE, and FI were 84.2%, 69.8%, 68.7%, and 3.1%, respectively. For stem cross-section areas, the improvements in BIAS, MAB, RMSE, and FI were 98.5%, 70.1%, 68.7%, and 3.1%, respectively. The cross-section area at 0.2 m from the ground occupied 22.7% of total cross-section area. Improvements in estimation of cross-section area at the lowest stem part indicate that stem volume estimation performance could also be enhanced. Although NLME models are more difficult to fit than NLFE models, the use of NLME models as a standard method for the estimating the parameters of stem taper equations should be considered.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ~ 5

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong;Hyun, Minhee;Taak, Yoon Chan;Shin, Suhyun;Lim, Gu;Paek, Gregory S.H.;Paek, Insu;Jiang, Linhua;Choi, Changsu;Hong, Jueun;Ji, Tae-Geun;Jun, Hyunsung D.;Karouzos, Marios;Kim, Dohyeong;Kim, Duho;Kim, Jae-Woo;Kim, Ji Hoon;Lee, Hye-In;Lee, Seong-Kook;Park, Won-Kee;Yoon, Yongmin;Byeon, Seoyeon;Hwang, Sungyong;Kim, Joonho;Kim, Sophia;Park, Woojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.34.3-34.3
    • /
    • 2020
  • Faint z ~ 5 quasars with M1450 ~ -23 mag are known to be the potentially important contributors to the ultraviolet ionizing background in the post-reionization era. However, their number density has not been well determined, making it difficult to assess their role in the early ionization of the intergalactic medium (IGM). In this work, we present the updated results of our z ~ 5 quasar survey using the Infrared Medium-deep Survey (IMS), a near-infrared imaging survey covering an area of 85 square degrees. From our spectroscopic observations with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8 m Telescope, we discovered eight new quasars at z ~ 5 with -26.1 ≤ M1450 ≤ -23.3. Combining our IMS faint quasars with the brighter Sloan Digital Sky Survey (SDSS) quasars, we derive, for the first time, the z ~ 5 quasar luminosity function (QLF) without any fixed parameters down to the magnitude limit of M1450 = -23 mag. We find that the faint-end slope of the QLF is very flat (-1.2) with a characteristic luminosity of -25.7 mag. The number density of z ~ 5 quasars from the QLF gives lower ionizing emissivity and ionizing photon density than those in previous works. These results imply that quasars are responsible for only 10-20% of the photons required to completely ionize the IGM at z ~ 5, disfavoring the idea that quasars alone could have ionized the IGM at z ~ 5.

  • PDF

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.