• Title/Summary/Keyword: S-PI Controller

Search Result 190, Processing Time 0.031 seconds

Design of PI Controller for DC ServoMotor Speed Control Using Genetic Algorithm (유전알고리즘을 이용한 직류 서보 모터 속도제어용 PI제어기의 설계)

  • Park, Han-Suk;Park, Hyun-Ju;Him, Dong-Wan;Hwang, Gi-Hyun;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2111-2113
    • /
    • 2002
  • This paper proposes the design of PI controller using real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. To evaluate the proposed method's effectiveness, we apply the proposed GA-PI controller to the speed control of an actual DC servomotor system. The experimental results show that GA-PI controller has the better control performance than PI controller in terms of settling time rising time and overshoot.

  • PDF

Design of PI Speed Controller with High Speed Response in High Performance Motor Driving System (고성능 전동기 구동 시스템에서 빠른 응답을 가지는 PI 속도제어기 설계)

  • 조내수;박철우;구본호;임성운;권우현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2765-2768
    • /
    • 2003
  • The PI controller has many trial-and-error steps for gain design. This paper proposes a new design concept. In this method, a degree of stability and Kharitonov theory are applied and the controller gain is directly expressed by system parameters and current controller's bandwidth. Simulation results for permanent magnetic synchronous motor(PMSM) driving systems confirm the validity of proposed method.

  • PDF

Speed Control of a Vector Controlled Induction Motor using Fuzzy-PI controller (퍼지-PI 제어기법을 이용한 유도전동기의 벡터제어)

  • Lee, Dong-Bin;Ryu, Chang-Wan;Hong, Dae-Seung;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2464-2466
    • /
    • 2000
  • When linear PI controller is used in speed control of induction motor, there happen some weaks which is very difficult to find optimal control gain at time of changing speed and load. In this paper, Fuzzy system incorporated with PI controller is proposed in order to that defects. PI gain is calculated by theoretical basis and fuzzy control is translated human expert's knowledge and experiences into rules numerically. Also it modifies and compensates PI gains in realtime. As comparing the motor characteristics of proposed fuzzy-PI speed controller to PI speed controller of a Vector controlled induction motor system in the increasing load torque and speed change during start and stop, The simulation results show robust and good performance.

  • PDF

Neural network controller design with a performance evaluation level (성능평가 계층을 가지는 신경망제어기 설계)

  • 이현철;조원철;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.613-618
    • /
    • 1992
  • We propose a new control architecture which consists of a PI controller and a neural network(NN) controller connected together in parallel. This architecture is well adapted to a wide range of uncertainties and variations of systems. The NN controller is learned through weights of the emulator which identify the dynamic chracteristics of the systems. A performance evaluation level of two NN's decides automatically which controller of the two controllers will be used mainly. The PI controller operates mainly during learning phase of the NN controller whereas a good performance is obtained from the NN controller only, when the NN controller is learned sufficiently.

  • PDF

The Control of a flexible Robotic Finger Driven by PZT (압전소자로 구동되는 유연성 로봇 핑거의 제어)

  • 류재춘;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

Fuzzy Controller design of fuel fired heater for vehicle to control temperature (자동차용 연소식 프리히터의 온도제어를 위한 퍼지 제어기 설계)

  • Jeong, W.G.;Lee, H.W.;Lee, J.S.;Kim, J.H.;Kim, G.Y.;Jo, W.R.;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • The fuzzy controller of the FFH(Fuel Fired Heater) used for vehicle is designed in this study. Two of the most important things of the pre-heater are how fast it can be at the set temperature and how to reduce the temperature deviation in the space to a minimum. The temperature deviation of the existed FFH with PI controller for temperature controller was reduced. Also, the fuzzy controller improved the response characteristics, and then the performance was inspected. When setting the temperature in this designed fuzzy controller, it took 12 minutes in the existed PI control method to reach $25^{\circ}C$. However, it took 9 minutes and 20 seconds in the fuzzy control method. Therefore, it is proved that the fuzzy controller is better than the existed one with fast response performance as 2 minutes 40 seconds. The temperature deviation was $2.4^{\circ}C$ in the existed control method but $1.6^{\circ}C$ in the designed fuzzy controller. Accordingly, the temperature deviation was improved too.

  • PDF

Maximum Torque Control of SynRM Using Multi-PI Controller (Multi-PI 제어기를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.956-957
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using Multi-PI controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ids for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled Multi-PI controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the Multi-PI controller.

  • PDF

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.