• Title/Summary/Keyword: S-N curve S-N

Search Result 719, Processing Time 0.029 seconds

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

Efficient Piecewise-Cubic Polynomial Curve Approximation Using Uniform Metric

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.320-322
    • /
    • 2008
  • We present efficient algorithms for solving the piecewise-cubic approximation problems in the plane. Given a set D of n points in the plane, we find a piecewise-cubic polynomial curve passing through only the points of a subset S of D and approximating the other points using the uniform metric. The goal is to minimize the size of S for a given error tolerance $\varepsilon$, called the min-# problem, or to minimize the error tolerance $\varepsilon$ for a given size of S, called the min-$\varepsilon$ problem. We give algorithms with running times O($n^2$ logn) and O($n^3$) for both problems, respectively.

Fracture Probability Properties of Torsion Fatigue of STS304 Steel (STS304강의 비틀림 피로파괴 확률특성)

  • Park, Dae-Hyun;Jeong, Soon-Ug
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.201-206
    • /
    • 2003
  • This study is test for STS304 specimen using bending and torsion state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed If summarize STS304 torsion result of fatigue test, is as following. Fatigue life prediction was available by Weibull statistics distribution, and 50% breakdown probability correlation equation was appeared as following.

  • PDF

Fracture Probability Properties of Pure and Cantilever Bending Fatigue of STS304 Steel (STS304강의 순수 및 외팔보형 굽힘 피로에 대한 파괴확률 특성)

  • Roh, Sung-Kuk;Park, Dae-Hyun;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.199-204
    • /
    • 2001
  • Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frenquently. Therefore many people are suffering harm of property. The destruction cause of macaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed.

  • PDF

Fatigue Characteristic of HIPS(HR-1360) Materials (HIPS(HR-1360) 재료의 피로 특성 평가)

  • Park, Jae-Sil;Seok, Chang-Sung;Lee, Jong-Gyu;Lee, Jae-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.129-134
    • /
    • 2000
  • Recently, HIPS(High Impact Polystyrene) materials are spot-lighted as office equipment, home electronics, electronics appliances housing, packing containers, etc. But its using are occur to problem caused by fatigue fracture. However, its strength is larged affected by environmental conditions. So, in this paper it tried to analyze the effect of temperature by tensile test and fatigue test. It was observed that yield strength and ultimate strength, fatigue life of same stress decreased relatively with increase temperature. Further, this paper predict S-N curve using the result of tensile test and micro vickers hardness test. For this purpose, the management in the engineering department is able to design the fatigue life of HIPS(HR-1360) materials.

  • PDF

Improvement of Fatigue-Proof Characteristics of Link Members Under Impact Loadings by a Spring-Actuated Mechanism (스프링구동 메커니즘의 충격 하중을 받는 링크부재의 내피로 특성 향상)

  • 안길영;박상후;이부윤;김원진;오일성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The air circuit breaker (ACB) with the spring-actuated mechanism was studied to improve the fatigue-proof characteristics of its link. The low-cycle fatigue fracture phenomenon occurred on the critical link, called h-link, of ACB from the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the b-link part of ACB was performed considering tile velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Also, the S-N curve obtained by experiments was used to investigate requirement on the fatigue-proof characteristics. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were examined and one of them was selected.

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Using Hot-spot Stress Approach (Hot-spot 응력을 이용한 십자형 필렛 용접재의 피로강도 평가)

  • Seok, Chang-Sung;Kim, Dae-Jin;Koo, Jae-Mean;Seo, Jung-Won;Goo, Byeong-Choon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1488-1493
    • /
    • 2005
  • In this study, fatigue tests to obtain S-N curves and FE analyses to obtain structural stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curve of load carrying joint to that based on hot spot stress. As a result, the S-N curve of load carrying joint based on hot-spot stress was almost exactly coincided with that of non load-carrying joint based on nominal stress. So we have conducted that the fatigue strength of a welded joint with different geometry from the non stress distribution along the expected crack path.

Modified S-N Curve Method to Estimate Fatigue life of Welded Joints (수정 S-N곡선법을 이용한 용접연결부의 피로수명 추정)

  • Yang, Park-Dal-Chi;Kim, Mi-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.26-32
    • /
    • 2012
  • In this paper, the effects of irregular bead shapes on fatigue life were investigated. A modified S-N curve method was used to estimate the fatigue life, which considered the inherent multiaxiality caused by the geometrical feature produced by the welding process. The point method of the critical distance method was used to determine the fatigue effective stress. Three types of fillet joint models were tested in the fatigue experiments. For each model, real bead shapes were collected using a 3D laser scanner, and finite element analyses were performed. The results of the analyses with actual bead shapes were compared with those using an idealized bead shape model. The results of the present analytical methods showed good agreement with the experimental results.

A Study on the Fatigue Strength Evaluation of Sintered Spur Gears (소결치차의 피로강도평가에 관한 연구)

  • Lyu, Sung-Ki;Katsmi, Inoue
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.106-112
    • /
    • 1999
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for the sintered steel bend specimens of various densities 6.6 to 7.0 g/$cm^3$ and the sintered spur gear to consisted of Fe-Cu-C. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained. The fatigue strength S for fatigue life N of the specimen with the initial length of crack ai is simulated, and they are shown as N-S-A curves. This study investigate the crack growth characteristics by experiments and present crack growth simulation method for sintered gear

  • PDF

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.