• Title/Summary/Keyword: S waves

Search Result 1,967, Processing Time 0.032 seconds

A strategy to enhance the efficiency of land seismic reflection method via controlling seismic energy radiation pattern. (지면 탄성파 반사법의 효율성 향상을 위한 탄성파 발생원 에너지 방사형 변조기법)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.807-814
    • /
    • 2004
  • Land seismic reflection survey has been increasingly demanded in various civil engineering works because of its own ability to delineate layers, water table, to detect cavities or fracture zones, to estimate seismic velocities of each layer. However, our shallow subsurface structures are very complex. The relatively thin layer(mostly soil) to the wavelength directly followed by a basic rock with high impedance used to generate complicated surface waves, kind of channel waves with high amplitude that is dominate in entire seismograms and hence the useful reflection events will be almost hopelessly immersed in the undesired surface waves. Thus, it would seem that the use of traditional seismic survey could not be likely to provide in itself a satisfactory information about our exploration targets. This paper hence introduces an efficient measuring strategy illustrating a properly controlled arrangement of the vertical single force sources commonly used, yielding a very sharply elongated form of P-energy with a minimum of S radiation energy, what we call, P-beam source. Abundant experiments of physical modeling showed that in that way the surface waves could be enormously reduced and the reflection events would be additive and thus reinforced. Examples of field data are also illustrated. The contribution of P-beam source will be great in civil engineering area as well as in general geological exploration area.

  • PDF

Analysis of Added Resistance in Short Waves (단파장 영역에서의 부가저항 해석)

  • Yang, Kyung-Kyu;Seo, Min-Guk;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

A Brain-based Study with Two Groups of High Math Anxiety and Low Math Anxiety through the Non-psychological Remedy Program of Functional Tasks (비심리적 처치프로그램에 의한 고등학생 수학불안집단 간의 뇌파 연구)

  • Choi-Koh, Sang Sook;Lee, Chang Yeon
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.383-396
    • /
    • 2016
  • This study investigated highschool students' brain waves on functional tasks such as a transition(F task) from equation to graph and the other transition(G task) vice versa. A total of 39 students participated in the study who attended a high school located in Gyunggi province. These students were divided into two groups, HMA and LMA by MASS test revised by Ko, & Yi (2012). The functional tasks for the stroop task to measure EEG were provided from a previous study, Seok(2015). The results indicated two groups on G tasks showed deeper and wider brain waves which demonstrated G tasks were more difficult than F tasks. However, HMA group had an effect of the non-psychological program which had given more chances on G tasks rather than F tasks within Students' Zone of Proximal Development. Also, HMA group's brain waves had more ranges in amplitude and width of waves. These results imply that the characteristics of students' brain waves with math anxiety are consistent to the previous studies.

Experimental Study on Added Resistance of VLCC for Ship's Operating Condition in Waves

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.240-245
    • /
    • 2015
  • In this study, experiments were performed using a model of a very large crude oil carrier (VLCC), which is a typical blunt ship, in a wave-making towing tank. The aim of the experiments was to determine the effect of added resistance in waves on the various operating conditions of a VLCC. An analysis of the results was conducted to determine the characteristics of resistance performance in waves. In addition, the characteristics of added resistance on a tanker were analyzed under irregular waves based upon the above result. The experimental results showed that added resistance was the highest around ${\lambda}/L=1.0$, and the added resistance increased with the increase of the ship speed. Furthermore, under even keel conditions, the added resistance was higher than that under the trim changes, and the smallest added resistance was measured at the trim by the stern. Based on the experimental results, this study proposes effective operating conditions by analyzing the characteristics of the mean added resistance and the expected extreme response in irregular waves.

A Study on the Assessment for the Auto-pilot System of a Ship in Waves (파랑중 선박의 자동조타 시스템의 평가에 관한 연구)

  • S.K. Lee;K.W. Lee;T.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 1998
  • There are two kinds of methods in the analysis of ship motion in irregular waves. The one is the spectral method in which the ship motion is assessed with spectral of irregular waves times R.A.O. of a ship. The other is, so called, time domain analysis, in which the irregular waves are used directly in the equation of ship motion to calculate the responses. In this paper, both methods are applied for the calculation of course keeping motion of a ship in irregular waves with auto-pilot control. And, the differences and useful1ness of the two methods in the assessment of auto-pilot system are compared.

  • PDF

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves

  • Choi, Sungho;Cho, Hwanjeong;Lissenden, Cliff J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.890-898
    • /
    • 2018
  • Nondestructive inspection (NDI) is an integral part of structural integrity analyses of dry storage casks that house spent nuclear fuel. One significant concern for the structural integrity is stress corrosion cracking in the heat-affected zone of welds in the stainless steel canister that confines the spent fuel. In situ NDI methodology for detection of stress corrosion cracking is investigated, where the inspection uses a delivery robot because of the presence of the harsh environment and geometric constrains inside the cask protecting the canister. Shear horizontal (SH) guided waves that are sensitive to cracks oriented either perpendicular or parallel to the wave vector are used to locate welds and to detect cracks. SH waves are excited and received by electromagnetic acoustic transducers (EMATs) using noncontact ultrasonic transduction and pulse-echo mode. A laboratory-scale canister mock-up is fabricated and inspected using the proposed methodology to evaluate the ability of EMATs to excite and receive SH waves and to locate welds. The EMAT's capability to detect notches from various distances is evaluated on a plate containing 25%-through-thickness surface-breaking notches. Based on the results of the distances at which notch reflections are detectable, NDI coverage for spent nuclear fuel storage canisters is determined.

Analysis of Manoeuvrability of a Ship in Waves by 3-Dimensional Panel Method (3차원 파넬방법에 의한 파중 선박의 조종성능 해석)

  • S.P. Ann;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.82-98
    • /
    • 1994
  • A mathematical model for the hydrodynamic forces acting on the ship manoeuvring in waves is formulated and a numerical method for the problem is developed. The motion of a ship, which manoeuvres in waves, may be thought to have two components; one is a high frequency component due to encounter waves, and the other is a low frequency component due to manoeuvring motion. So the method of two time scale expansion is used to divide linear boundary value problem. For the effects of waves on the manoeuvring motion of a ship, only the second order drift forces are considered. The integral equation for the velocity potential is solved by 3 dimensional panel method and hydrodynamic forces are calculated by direct integral method.

  • PDF

A Study on the Frequency Transfer Function of a Full-Scale Ship Considering the Multi-Directional Waves (다방향파를 고려한 실선 주파수 전달함수 도출기법 연구)

  • J.C. Kim;I.K. Park;H.J. Jo;J.A. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.51-57
    • /
    • 1994
  • In this study, the method for calculation of the frequency transfer function of motions based on the multi-directional waves in the analysis of a full-scale seakeeping trials is presented. For calculation of the frequency transfer function in the directional waves, Takezawa's inverse estimation method was introduced and the frequency ranges were divided into three parts in order to consider following seas. To confirm the validity of this method, the numerical simulation was executed. Those results show that analysis method of the multi-directional waves is more reliable than that of one directional waves, and confirm the possibility of applying this method to the full-scathe seakeeping trials.

  • PDF

Stroke Patients: Effects of Combining Sitting Table Tennis Exercise with Neurological Physical Therapy on Brain Waves

  • Seoung Won Seo;Yong Seong Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.1
    • /
    • pp.19-23
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze the brain waves and develop various exercise programs to improve the physical and mental aspects of stroke patients when neurological physical therapy and sitting table tennis exercise are applied to stroke patients. Methods: In this study, an experiment was conducted on 15 patients diagnosed with stroke, and training was performed after changing the ping-pong table to a sitting position to apply ping-pong exercise to stroke patients. After training was conducted for 40 minutes twice a week for 4 weeks, brain waves were measured before and after. EEG was measured using Laxtha's DSI-24 equipment as a measurement tool, and data values were extracted through the Telescan program. Results: Most of the relative beta waves showed a significant difference before and after the intervention. As for the characteristics of beta waves, this result can be seen as being highly activated during exercise or other activities. Conclusion: Ping-pong exercise in a sitting position is a good intervention method for stroke patients, and it can help to use it as basic data in clinical practice by showing brain activity.