• 제목/요약/키워드: S phase arrest

검색결과 162건 처리시간 0.023초

청국장에서 얻은 Isoflavone의 MDA-MB-453세포에서 항암효과 및 관련 기전 (Anticancer Effects of the Isoflavone Extract from Chungkukjang via Cell Cycle Arrest and Apoptosis in MDA-MB-453 Cells)

  • 신진영;김태희;김안근
    • 약학회지
    • /
    • 제58권1호
    • /
    • pp.33-39
    • /
    • 2014
  • The objective of this study is to evaluate the anticancer effects of the isoflavone extract from Chungkukjang in human breast cancer, MDA-MB-453 cells. For this study, MDA-MB-453 cells were treated with 12.5, 25, and $50{\mu}g$ isoflavone extract for 24, 48, and 72 hr. Cell proliferations were decreased in a time- and dose-dependent manner. Reduced cell proliferation was suspected by apoptosis or cell cycle arrest. Therefore, after treatment of $50{\mu}g$ isoflavone extract, apoptotic cells were investigated by annexin V staining. The results indicated that isoflavone extract increased the number of early apoptotic cells compared with control. Cleaved PARP was also increased. Next, we investigated the cell cycle and related proteins. The isoflavone extract leads to cell cycle arrest at the G2/M phase. Moreover isoflavone extract had influenced cell cycle relate proteins such as cyclin B1, cyclin A, and p21. These results suggest that isoflavone extract from Chungkukjang induce apoptosis and cell cycle arrest at G2/M phase via regulation of cell cycle-related proteins in MDA-MB-453 cells.

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과 (Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell)

  • 김은지;김근태;김보민;임은경;김상용;하성호;김영민;유제근
    • KSBB Journal
    • /
    • 제30권4호
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구 (Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells)

  • 김성옥;최영현
    • 생명과학회지
    • /
    • 제26권9호
    • /
    • pp.1015-1021
    • /
    • 2016
  • Pyrimidine 유도체의 일종인 5-fluorouracil (5-FU)은 광범위하게 사용되는 항암제의 일종으로, thymidylate synthase의 활성을 억제시켜 핵산의 합성 및 대사기능 자애 유발 물질이다. 본 연구에서는 Ewing′s 육종 CHP-100 세포에서 5-FU의 증식억제와 연관된 기전 해석으로 시도하였다. 본 연구의 결과에 의하면, 5-FU 처리 시간의 경과에 따른 CHP-100 세포의 증식억제가 세포주기 G1 arrest 유발에 따른 것임을 알 수 있었다. 5-FU에 의한 CHP-100 세포의 G1 arrest는 retinoblastoma protein (pRB)의 탈인산화에 따른 전사인자 E2F-1 및 E2F-4와의 결합 촉진과 연관성이 있었다. 비록 5-FU 처리가 cyclin-dependent kinases의 발현에는 크게 영향을 주지 않았으나, 정상배지에서 배양된 대조군에 비하여 cyclin A 및 B의 발현이 5-FU 처리 시간 의존적으로 억제되었다. 또한 5-FU에 의한 CHP-100 세포의 G1 arrest는 apoptosis 유도와 연관이 있음을 핵 내 염색질의 응축에 따른 apoptotic body의 형성증가, poly (ADP-ribose) polymerase의 단편화 및 annexin V 염색 등을 통하여 확인하였다. 아울러 5-FU는 pro-apoptotic Bax 단백질의 발현 증가 및 anti-apoptotic Bcl-2의 발현 감소를 통한 mitochondrial membrane potential의 소실을 촉진시켰으며, 이로 인하여 미토콘드리아에서 세포질로의 cytochrome c 유리가 증가시켰음을 알 수 있었다. 따라서 본 연구의 결과는 5-FU에 의한 CHP-100 세포의 증식억제와 연관된 G1 arrest 및 apoptosis 유도에는 pRB의 인산화 억제 및 미토콘드리아 기능의 손상이 최소한 관여하고 있음을 의미하는 것이다.

NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구 (NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines)

  • 조홍재;김강미;송주동;박영철
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.778-782
    • /
    • 2007
  • Diphenyleneiodonium (DPI)는 NADPH oxidase 같은 flavoenzymes의 저해제로써 널리 사용되고 있다. 본 연구에서는 인간 대장암 세포주 HCT-116 (wild-type p53)와 HT-29 (p53 mutant) 및 인간 유방암 세포주인 MCF-7(wild-type p53)의 세포성장 과정에서의 DPI의 효과를 살펴보았다. DPI는 농도 및 시간 의존적으로 암세포주의성장을 막았으며 G2/M phase에서 cell cycle arrest를 일으켰다. Cell cycle arrest의 가장 높은 값은 DPI 처리후 12 시간에서 관찰할 수 있었다. 한편 DPI는 아폽토시스 그리고 cell cycle arres 에 관여하는 유전자 발현에 관여하는 p53의 표현을 크게 증가시켰으며, 이는 DPI처리 후 6시간 후 부터 관찰할 수 있었다. 그러나 NADPH oxidase의 조합을 억제하는 catechol 계인 apocynin은 p53의 발현을 유도하지 못하였다. 이것은 DPI에 의해 유도되는 p53의 발현증가는 NADPH oxidase활성의 저해와 관련되어 있지 않다는 것을 의미한다. 결론적으로 DPI는 HCT-116, HCT-15 및 MCF-7 암세포주에서 ROS에 비 의존적으로 wild-type p53 발현의 증가를 유도하며, 이 증가된 p53은 DPI에 의해 유도되는 성장 억제 및 C2/M phase에서의 cell cycle arrset과정의 조절기전에 관여한다는 것을 시사한다.

HCT116 대장암세포에서 Akt-mTOR 신호경로를 통한 개똥쑥 추출물 (AAE)의 세포주기 억제 효과 (Cell Cycle Arrest of Extract from Artemisia annua Linné. Via Akt-mTOR Signaling Pathway in HCT116 Colon Cancer Cells)

  • 김보민;김근태;임은경;김은지;김상용;하성호;김영민
    • KSBB Journal
    • /
    • 제30권5호
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, extract from Artemisia annua in L. (AAE) is known as a medicinal herb that is effective against cancer. The cell cycle is regulated by the activation of cyclin-dependent kinase (CDK)/cyclin complex. We will focus on regulation of CDK2 by cyclin E. cyclin E is associated with CDK2 to regulate progression from G1 into S phase. Akt is known to play an important role in cell proliferation and cell survival. Activation of Akt increases mTOR activity that promotes cell proliferation and cancer growth. In this study, we investigated that AAE-induced cell cycle arrest at G1/S phase in HCT116 colon cancer. Treatment of AAE shows that reduced activation of Akt decreases mTOR/Mdm2 activity and then leads to increase the activation of p53. The active p53 promotes activation of p21. p21 induces inactivation of CDK2/cyclin E complex and occurs cell cycle arrest at G1/S phase. We treated LY294002 (Akt inhibitor) and Rapamycin (mTOR inhibitor) to know the relationship between the signal transduction of proteins associated with cell cycle arrest. These results suggest that AAE induces cell cycle arrest at G1/S phase by Akt/mTOR pathway in HCT116 colon cancer cell.

SCK선암 세포주에서 방사선에 의한 Apoptosis와 세포 주기 (The Cell Cycle Dependence and Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line)

  • 이형식;박홍규;허원주;서수영;이상화;정민호;박헌주;송창원
    • Radiation Oncology Journal
    • /
    • 제16권2호
    • /
    • pp.91-98
    • /
    • 1998
  • 목적 : SCK 선암 세포주에서 방사선 조사에 의해 일어나는 apoptosis와 세포 주기와의 연관성을 규명하고자하였다. 대상 및 방법 : SCK 선암 세포주를 apoptosis의 통상적인 정성 분석 방법인 agarose gel electrophoresis 방법을 이용하여 방사선 조사량과 배지 pH 환경과의 연구에서 2-l2Gy의 방사선 조사량과 pH 7.5 및 5.6의 배양 배자 조건하에서 다양한 배양 시간의 경과에 따른 DNA fragmentation의 지표인 laddering을 관찰하였다. 실험 조작으로 apoptosis가 유발된 세포군을 정량적으로 분석하고 세포 주기 분석을 위해 FACScan을 이용하였다. 결과 : apoptosis가 왕성히 발현되었던 pH 7.5 배지에서 배양하였던 세포에서는 방사선 조사직후부터 $G_2M$ phase의 세포들의 분획이 증가하기 시작하여 12시간째 약 $70\%$까지의 최고치를 보인 후 36시간째에 방사선을 조사하지 않았던 상태의 분획으로 정상화되었다. 하지만 pH 6.6 배지에서 배양하였던 세포에서의 $G_2/M$ phase의 세포들의 분획의 증가는 pH 7.5 배지에서 배양하였던 세포들에 비해 비교적 천천히 일어나고 그 최고치도 24시간째에 약 $45\%$로 관찰되었다. 특이한 것은 $G_2/M$ phase의 세포들의 분획이 그 이후 감소되는 정도가 pH 7.5 배지에서 배양하였던 세포들에 비해 미약하여 48시간 배양 이후에도 약 $30-35\%$의 세포는 $G_2/M$ Phase의 세포들의 분획으로 관찰되었다. 결론 : 연구자들은 이러한 현상이 세포들이 GJM phase에서 많은 양의 세포들이 집적되어 세포주기를 순환하지 못하는 $G_2M$ arrest 현상으로 이해하였다. 세포 내외의 산성환경 상태에서 방사선을 조사 받은 SCK 종양세포는 $G_2/M$ arrest 상태가 지속되며 이는 post-mitotic apoptosis를 억제한다고 추론하였다.

  • PDF

Induction of G1 arrest and apoptosis mediated by a novel nucleoside analog, LJ-331 in human leukemia HL-60 cells

  • Lee, Eun-Jin;Shin, Dea-Hong;Jeong, Lak-Shin;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.86-86
    • /
    • 2003
  • In a continuous effort to develop novel anticancer agents we newly synthesized and evaluated the antitumor activity of nucleoside analogues. One analogue, 4 - [2-Chlor-6- (3-iodo- benzy lamino) -purin -9-yl]- 2,3-dihydroxy-cyclopentanecarbo xylic acid methylamide (LJ-331), has been shown to exert a potent inhibition of human cancer cell growth in vitro including human lung (A549), stomach (SNU-638) and leukemia (HL-60) cancer cells. Following mechanism of action study revealed that LJ - 331induces cell cycle arrest at the G1 phase in HL-60 cells and evokes apoptotic phenomena such as an increase in DNA ladder intensity and chromatin condensation by a dose- and time-dependent manner. LJ-331 also activated the caspase-3 activity in HL-60. This result suggests that the growth inhibition of human cancer cells by LJ-331 might be related to the cell cycle arrest and induction of apoptosis.

  • PDF

토끼 핵이식 수정란의 체외 발달에 미치는 공핵란 세포주기의 효과 (Effect of Cell Cycle of Donor Nucleus on In Vitro Development in Nuclear Transplant Rabbit Embryos)

  • 박충생;전병균;윤희준;이효종;최상용
    • 한국가축번식학회지
    • /
    • 제20권2호
    • /
    • pp.143-153
    • /
    • 1996
  • To improve the efficiency of nuclear transplantation in the rabbit, this study were evaluated the influence of celly cycle of donor nuclei on the in vitro developmental potential in the nuclear transplant embryos. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G1 phase of 32-cell stage. Synchronization of the cell cylce of blastomeres were induced, first, using an microtubules polymerization inhibitor, 0.5$\mu\textrm{g}$/ml colcemid for 10h to arrest blastomeres in metaphase, and secondly, using a DNA synthesis inhibitor, 0.1$\mu\textrm{g}$/ml aphidicolin for 1.5 to 2h to cleave to 32-cell stage and arrest them in G1 phase. The separated G1 phase blastomeres of 32-cell stage were injectied into enucleated recipient cytoplasms by micromanipulation. After culture until 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation. The nuclear transplant embryos were co-cultured for 120h. In vitro cultured embryos were monitored every 24h to assess for development rate. After in vitro cultue for 120h, the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye for counting the number of blastomeres under a fluorescence microscopy. The cleavage rate of blastomeres from 16-cell stage stage rabbit embryos treated with colcemid for 10h or aphidicolin for 6h following colcemid for 10h were not significantly different. The electrofusion rate was similar by high in S and G1 phase donor nuclei as 80.6 and 79.1%, respectively. However, the nuclear transplant embryos using G1 phase donor nuclei were developed to blastocyst at high rate(60.3%) than those using S phase donor nuclei(26.0%). Moreover, the mean blastocyst stage were increased significantly(P<0.05) with the G1 phase donor nuclei(176.6 cells and 1.50 cycles), as compared with the S phase donor nuclei(136.6 cells and 1.42 cycles). These results show that the blastomeres of G1 phase were more successful as donor nuclei in the nuclear transplant procedure, compared with S phase.

  • PDF

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • 제21권1호
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.