• Title/Summary/Keyword: S파 속도구조

Search Result 47, Processing Time 0.029 seconds

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

Comparative Study on Physical and Mechanical Characteristics of Volcanic Rocks in Jeju Island (제주도 화산암의 물리・역학적 특성에 대한 비교연구)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.39-49
    • /
    • 2014
  • Volcanic rocks in Jeju island show vesicular structure caused by various environmental factors, and indicate the differences in geological and mechanical characteristics from region to region. Previous studies on the volcanic rocks in Jeju island have been actively conducted on geological and chemical properties in terms of geophysics and geology and on physical and mechanical properties in terms of engineering. But comprehensive comparative analysis on physical and mechanical properties of volcanic rocks in Jeju island is not conducted. In this study, the physical and mechanical properties of volcanic rocks in Jeju island were compared and analyzed comprehensively through the existing research papers and reports about volcanic rocks in Jeju island. As a result, it was found that the relationship between absorption (porosity) and apparent specific gravity is commonly linear and could be represented as two different linear approximations. In addition, it was found that the relationship between P-wave velocity and S-wave velocity and the relationship between absorption (porosity) and uniaxial compressive strength could be classified more clearly, considering two different linear relationships in absorption (porosity) and apparent specific gravity.

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method (수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도)

  • Jeon, Taehyeon;Kim, Ki Young;Woo, Namchul
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2013
  • Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam (청천댐 주변의 천부 P파 및 S파 속도구조)

  • Park, Yeong Hwan;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.

A Study on the Preliminary 3-D Structure Model around East Sea and Its Vicinity

  • 조봉곤;이우동;황의홍
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.16-16
    • /
    • 2003
  • 본 연구는 ILP(International Lithosphere Project) Task Group II-4가 진행하고 있는 상부맨틀에 대한 3차원 구조도 작성 연구의 일환으로 수행되어졌으며 구조도 작성을 위한 데이터 베이스의 구조는 task group의 표준안을 따랐다. 기존 문헌과 기존의 데이터 베이스를 통해서 획득된 자료를 이용해 동해와 그 주변을 대상으로 하는 지역의 ($32-45^{\circ}$E, $122-148^{\circ}$N) 상부 670km까지의 3차원 구조도 작성을 위한 초기 모델을 구축하였으며, 이 절차를 최대한 자동화하는 프로그램을 포트란을 이용해 만들어보았다. 연구 지역에 대한 곡율을 계산하기 위해 표준타원체 모델인 WGS84과 geoid undulation 모델인 EGM96을 사용했으며 지형 고도 자료는 GTOPO30, GLOBE 1.0, 그리고 Smith and Sandwell 데이터베이스를 사용하여 지구 중심으로부터 지표까지의 거리를 구하였다. 연구지역은 $0.25^{\circ}$간격으로 나누었으며 총 5777개의 격자점을 정의하였으며 각각의 격자점에 1차원 수직구조를 부여함으로써 3차원 모델을 구축하였다. 그리고 지형적으로나 지질학적으로 유사한 지역을 하나의 구역으로 정의하고 동일한 수직구조를 부여함으로써 모든 격자점에 1차원 수직구조를 정의하지 않도록 하였다. 본 연구에서는 지표 지질은 모델에 고려하지 않았지만 지형학적으로 의미가 있는 분지나 수평적으로 불균질성이 뚜렷한 지역을 중심으로 연구 지역의 리젼을 정의하였다. 중요 리젼에 대한 지각구조에 대해서는 기존의 문헌을 통해 모델치를 정의하였으며 지각 하부부터 상부 670km에 대한 부분은 Task Group에서 제시한 표준 모델을 이용했다. 모델을 정의하기 위해 주어진 격자점에 대한 지구 중심으로부터 지오이드까지의 거리, 지오이드로부터 지표까지의 거리를 정의해주었으며, 각 격자점의 수직구조를 정의하기 위해 깊이에 따른 각 매질의 밀도, P파의 속도, S파의 속도, P파에 대한 Q값, S파에 대한 Q값을 정의 해주었다. S파의 속도를 구하기 위해서 지구 내부 물질을 포아송 매질이라는 가정 하에, 관계식을 $Vp{\;}={\;}SQRT(3){\;}{\times}{\;}Vs$ 이용하였다. 획득한 모델치들을 이용해 동해와 동해 인근 지역에 대한 초기모델을 구축하였다.

  • PDF

DISPERSION OF RAYLEIGH WAVES IN THE KOREAN PENINSULA (한반도의 레일리파 분산에 대한 연구)

  • Cho Kwang-hyun;Lee Kiehwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.29-36
    • /
    • 2005
  • The crustal structure of Korean Peninsula is investigated by analyzing phase velocity dispersion data of Rayleigh wave. Earthquakes recorded by three component seismographs during 1999 - 2004 in South Korea are used in this study. The fundamental mode signals of Rayleigh waves are obtained from vertical components of seismograms by multiple filter technique method and phase match filter method. Velocity dispersion curves of surface waves for 14 propagation paths on the great circle are computed from the fundamental mode signals on the great circle path by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocities of Rayleigh wave are inverted. The result models are regarded as average structure for surface wave propagation paths respectively. All the results can be explained by an earth model of the Korean Peninsula comprising crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to 33 km depth and uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec.

  • PDF

Shear Wave Velocity Structure Beneath White Island Volcano, New Zealand, from Receiver Function Inversion and H-κ Stacking Methods (수신함수 역산 및 H-κ 중합법을 이용한 뉴질랜드 White Island 화산 하부의 S파 속도구조)

  • Park, Iseul;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.66-73
    • /
    • 2014
  • To estimate the shear-velocity ($v_s$) structure beneath the WIZ station on White Island in New Zealand, we applied receiver function (RF) inversion and H-${\kappa}$ stacking methods to 362 teleseismic events (Mw > 5.5) recorded during April 20, 2007 to September 6, 2013. Using 71 RFs with errors less than 20% after 200 iterative computations, we determined that the depth to Moho of $v_s$ = 4.35 km/s is $24{\pm}1km$ within a 15 km radius of the station. In an 1-d $v_s$ model derived by RF inversions, a 4-km thick low-velocity layer (LVL) at depths of 18 ~ 22 km was identified in the lower crust. This LVL, which is 0.15 km/s slower than the rocks above and below it, may indicate the presence of a deep magma reservoir. The H-${\kappa}$ stacking method yielded an estimate of the depth to the Moho of 24.5 km, which agrees well with the depth determined by RF inversions. The low $v_p/v_s$ ratio of 1.64 may be due to the presence of gas-filled rock or hot crystallizing magma.

Waveform inversion of shallow seismic refraction data using hybrid heuristic search method (하이브리드 발견적 탐색기법을 이용한 천부 굴절법 자료의 파형역산)

  • Takekoshi, Mika;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • We propose a waveform inversion method for SH-wave data obtained in a shallow seismic refraction survey, to determine a 2D inhomogeneous S-wave profile of shallow soils. In this method, a 2.5D equation is used to simulate SH-wave propagation in 2D media. The equation is solved with the staggered grid finite-difference approximation to the 4th-order in space and 2nd-order in time, to compute a synthetic wave. The misfit, defined using differences between calculated and observed waveforms, is minimised with a hybrid heuristic search method. We parameterise a 2D subsurface structural model with blocks with different depth boundaries, and S-wave velocities in each block. Numerical experiments were conducted using synthetic SH-wave data with white noise for a model having a blind layer and irregular interfaces. We could reconstruct a structure including a blind layer with reasonable computation time from surface seismic refraction data.

S-wave Relative Travel Time Tomography for Northeast China (중국 만주지역 S파 상대주시 토모그래피)

  • Kim, Yong-Woo;Kim, Hyo-Ji;Lim, Jung-A;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • The Northeast China is an important site geologically and geophysically because of a huge volcano called Mt. Baekdu, which is one of the largest volcanoes in the world. Signs of eruption have been recently observed and people are keen to its behavior. We carried out relative travel time tomography to investigate the velocity structure between 100 ~ 600 km depth beneath Northeast China. We used teleseismic data during 2009 ~ 2011 recorded in NecessArray provided by IRIS (Incorporated Research Institute for Seismology). The relative observations were obtained by using the multi-channel cross-correlation method. Based on the tomographic results, we observed that the locations beneath which low-velocity zones are observed coincide with the locations of several volcanic regions in Northeast China. A low-velocity anomaly is revealed beneath Mt. Baekdu down to 600 km depth, which is thought to the main origin of the magma supply for Mt. Baekdu. Another low velocity anomaly is observed beneath east of the Datong volcano down to around 300 km depth, which is inferred to be related to an upwelling from deep mantle. We observed a low velocity anomaly beneath the Wudalianchi volcano down to around 200 km depth, which may imply that this volcano has been formed by an upwelling from the asthenosphere.