• Title/Summary/Keyword: S파

Search Result 115, Processing Time 0.024 seconds

Two Dimensional Shear Wave Velocity Using the Inversion of Surface Waves (표면파 역산을 이용한 2차원 S파 속도구조에 관한 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.675-682
    • /
    • 2000
  • 25 seismic shot gathers were obtained to study the two dimensional subsurface shear wave velocities in a landfilled area near the Keum river estuary. Borehole(BH#1 and BH#2) tests at two sites were made in the same area. Standard Penetration Tests were also performed at the same time. The 2-D shear wave velocity structure resulted from the inversion of the seismic data shows that the subsurface of the studied area consists of the upper 1${\sim}$3 meter thick layer(200 m/sec${\sim}$700 m/sec), the middle 5${\sim}$8 m thick low velocity layer(100 m/sec${\sim}$400 m/sec), and the lower layer of 1000m/sec or higher shear wave velocities. The thickness of the low velocity layer decreases from the BH #1 site to the BH #2 site. The depth to the basement also decreases toward the BH #2 site. The examination of the S wave velocity structure, the description of the geologic contents, and the Standard Penetration Test values indicate that the middle layer of low shear wave velocity may be related to the clay content of the layer. On the other hand, the Standard Penetration test values increase with depth, showing no significant relationship with the geologic contents of the subsurface. This study shows that the inversion of surface waves can be effective in the study of the shear wave velocity, especially in the area where low velocity layers can be found. The method of inversion of surface waves also can be used as a viable technique to overcome the limit of the seismic refraction method.

  • PDF

Estimation of site amplification and S-wave velocity profiles in metropolitan Manila, the Philippines, from earthquake ground motion records (지진 관측 기록을 이용한 필리핀 마닐라의 현장 증폭 특성 및 S파 속도구조 추정)

  • Yamanaka, Hiroaki;Ohtawara, Kaoru;Grutas, Rhommel;Tiglao, Robert B.;Lasala, Melchor;Narag, Ishmael C.;Bautista, Bartlome C.
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • In this study, empirical site amplifications and S-wave velocity profiles for shallow and deep soils are estimated using earthquake ground motion records in metropolitan Manila, the Philippines. We first apply a spectral inversion technique to the earthquake records to estimate effects of source, path, and local site amplification. The earthquake data used were obtained during 36 moderate earthquakes at 10 strong-motion stations of an earthquake observation network in Manila. The estimated Q value of the propagation path is modelled as $54.6f^{1.1}$. Most of the source spectra can be approximated with the omega-square model. The site amplifications show characteristic features according to surface geological conditions. The amplifications at the sites in the coastal lowland and Marikina Valley shows predominant peaks at frequencies from 1 to 5 Hz, while those in the central plateau are characterised by no dominant peaks. These site amplifications are inverted to subsurface S-wave velocity. We, next, discuss the relationship between the amplifications and average S-wave velocity in the top 30m of the S-wave velocity profiles. The amplifications at low frequencies are well correlated with the averaged S-wave velocity. However, high-frequency amplifications cannot be sufficiently explained by the averaged S-wave velocity in the top 30 m. They are correlated more with the average of S-wave velocity over depths less than 30 m.

S-wave Relative Travel Time Tomography for East Asia (동아시아 S파 상대 주시 토모그래피)

  • Cho, Seongheum;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • We performed seismic imaging based on relative S-wave travel times to examine S-wave velocity of upper mantle structure beneath East Asia. We used teleseismic events recorded at 129 broadband stations of the Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea Meteorological Administration (KMA), and National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along plate boundaries around the Japanese islands region. These anomalies may indicate subducting Pacific and Philippine Sea plates. On the other hand, a low-velocity anomaly is revealed beneath east of the Korean peninsula down to around 300 km depth, which is thought to be related to the formation of the Ulleung basin and the Ulleung island. Low-velocity anomalies revealed beneath the Jeju island may imply that the formation and volcanism of the Jeju island have been caused by magmatic sources from the deep mantle.

P- and S-wave seismic studies in the Ulsan fault zone near Nongso-Eup (농소읍 부근 울산단층대에서의 P파 및 S파 탄성파 조사 연구)

  • Lee, Chang-Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.95-100
    • /
    • 2006
  • To reveal subsurface structures of the Ulsan fault, seismic data were recorded along a 750-m long line near Nongso-Eup in Ulsan. P and S waves were generated simultaneously by impacting a 5 kg sledgehammer on a tilted plate. The data were received by 16 10-Hz 3-component geophones at 3 m intervals. Refracted P waves were inverted using the tomography method. Dip moveout and migration were applied to reflection data processed following a general sequence. Four layers were identified based on P-wave velocities and P- and S-wave stacked image. From top to bottom, the P-wave velocity of each layer ranges in $300{\sim}1100\;m/s$, $1100{\sim}1700\;m/s$, $1700{\sim}2700\;m/s$, and greater than 2700 m/s. The corresponding thickness of the top three layers averages 3.9 m, 5.9 m, 4.4 m, respectively. The S-wave stack section is effective to define subsurface structures shallower than 10 m.

  • PDF

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-κ Stacking Method (수신함수와 표면파 분산곡선의 복합역산 및 수신함수 H-κ 중첩법을 이용한 원주 KS31 지진관측소 하부의 S파 지각 속도구조)

  • Jeon, Tae-Hyeon;Kim, Ki-Young;Park, Yong-Cheol;Kang, Ik-Bum
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • To estimate the S-wave velocity structure beneath the KS31 broad-band station in Wonju, Korea, we used $H-{\kappa}$ stacking and joint inversion of receiver functions and surface-wave dispersion curves derived from 297 teleseismic events (Mw > 5.5) recorded during the period between 2002 and 2009. We thereby determined that the average depth to a nearly flat Moho is $32.4{\pm}0.5\;km$ within tens of kilometer radius of the seismic station. For the crust at this location, we estimate an average shear-wave velocity of 3.69 km/s and a ratio of P- to S-wave velocities, $V_p/V_s$, of $1.72{\pm}0.04$, as is typical for continental crust. A negative phase in the receiver functions at 1 s indicates the presence of a shearwave low velocity layer in a depth interval of 10 to 18 km in the upper crust beneath the KS31 station.

Sonic Velocity Determination using Data from Monopole and Dipole Sources (음파검층에서의 속도결정 - monopole및 dipole소스의 비교 -)

  • Kong, Nam-Young;Lee, Sung-Jin;Zhao, Weijun;Kim, Yeoung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.225-231
    • /
    • 2006
  • As a study of efficient velocity analysis in sonic log, several preexisting techniques have been adopted to the sonic data taken from model borehole in Kangwon National University, and the results were compared. For the data taken from monopole source, Slowness-Time Coherence method which is a common technique for nondispersive wave was used. For the data taken from dipole source, conventional STC and Tang's method(Tang et al., 1995) were used. From the good matches in the P and Stoneley wave velocities, we could confirm the effectiveness of STC computation. We also could find that shear velocity obtained from Tang's method were exactly matched with shear velocity obtained from monopole source, and that the velocity were within the range of S wave velocity values obtained from conventional STC application to dispersive flexural waves.

  • PDF

Relationship between Dynamic Elastic Modulus and Lithology using Borehole Prospecting (시추공 물리탐사를 이용한 동탄성계수와 암상과의 상관성 분석)

  • Park, Chung-Hwa;Song, Moo-Young;Park, Jong-Oh
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • To delineate the relationship between dynamic elastic modulus and lithologies, suspension PS logging was applied to Yuseong granite, Paldang banded gneiss, and Sabuk sedimentary rock. P and S wave velocities were also measured for these lithologies. In addition, uniaxial strength and Poisson’s ratio were measured in a laboratory for Yuseong granite and Paldang banded gneiss. In laboratory measurements, P and S wave velocities in Paldang banded gneiss were higher than those in Yuseong granite whereas Poisson’s ratio in Paldang banded gneiss was lower than that in Yuseong granite. This implies that P and S wave velocities correlate reversely with Poisson’s ratio. The dynamic Young modulus obtained from suspension PS logging was high compared to the dynamic bulk modulus and the dynamic shear modulus.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF