• Title/Summary/Keyword: Ruthenium catalyst

Search Result 59, Processing Time 0.024 seconds

Development of Monolithic Catalyst System with Co-Ru-Zr for CO2 (dry) Reforming of Methane : Enhanced Coke Tolerance

  • Kim, Hyojin;You, Young-Woo;Heo, Iljeong;Chang, Tae-Sun;Hong, Ji Sook;Lee, Ki Bong;Suh, Jeong Kwon
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.314-324
    • /
    • 2017
  • To verify the viability of Co, Ru and Zr-based catalyst for $CO_2$ (dry) reforming reaction, catalysts were fabricated using cordierite, silicon carbide and rota monolithic substrates, and they were compared with the conventional $Co-Ru-Zr/SiO_2$ catalyst in terms of performance and durability. Cordierite monolith was showed high activity with the least amount of active component. In addition, when Cordierite monolith was coated with Co-Ru-Zr in various ways, most excellent performance was showed at a precursor solution coating method. In particular, when 0.9 wt% Co-Ru-Zr/Cordierite was used for reaction, it was observed that 95% $CO_2$ conversion was maintained for 300 h at $900^{\circ}C$.

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

Diagnosis of Performance Degradation of Direct Methanol Fuel Cell Stack after Long-Term Operation (장기운전에 의한 직접메탄올 연료전지 스택의 성능 열화 분석)

  • Kim, Sang-Kyung;Hyun, Min-Soo;Lee, Byung-Rok;Jung, Doo-Hwan;Peck, Dong-Hyun;Lim, Seong-Yop
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.775-780
    • /
    • 2011
  • 5-cell DMFC stack was fabricated and operated with the load of 4 A for 4000 hrs. After 4000 hrs operation peak power density of the stack reduced by 27.3%. Two of the five cells did now show performance degradation, the performance of other two was reduced by 40% and the performance of the other decreased by 60%. The amount of performance degradation of each cell by long-term operation did not correlate with the position in the stack. Platinum particle size in the anode catalyst layer of the MEA with the strongest degradation increased and the increase was severer on the position of methanol inlet than on the position of methanol outlet. However, platinum particle size in the cathode catalyst layers did not changed for all the MEA'. Ruthenium crossover from the anode catalyst layer to the cathode catalyst layer through the membrane was observed after 4,000 hrs operation by SEM-EDX and it occurred for all MEA' regardless of the degree of performance degradation. Atomic ratio of ruthenium to platinum in the cathode catalyst layer was the highest in the MEA with the strongest performance degradation.

Propagating Spiral Waves Obtained in a Catalyst-Immobilized Gel Membrane by the Belousov-Zhabotinsky Reaction System

  • Kim, Bong-Seong;Jo, Eun-Ae;Basavaraja, C.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1956-1962
    • /
    • 2010
  • The formation of diverse spiral waves was studied in a polyacrylamide gel membrane with ruthenium(4-vinyl-4'-methyl-2,2'-bipyridine)bis(2,2'-bipyridine)bis(hexafluorophosphate) by a gas-free Belousov-Zhabotinisky (BZ) reaction system containing 1,4-cyclohexanedione (1,4-CHD). The gel membrane was found to be receptive for observing propagating waves since a clearer wave-train is obtained during a long reaction time without any disturbance from the immobilized metal catalyst which can be dissolved into the highly acidic solution of the BZ system. The distinctive waves in the system basically depend on both $BrO_3$ and 1,4-CHD in the initial phase, and are influenced by the intensity of illumination of visible light.

Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor (마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구)

  • Choi, Seok Hyun;Hwang, Sueng Sik;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • Sodium borohydride ($NaBH_4$) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous $NaBH_4$ solution in a microchannel with a hydraulic diameter of $461{\mu}m$ is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of $NaBH_4$ in the presence of a ruthenium catalyst, two different flow phases (aqueous $NaBH_4$ solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

A Study on the Reaction Kinetics of Nitrogen Compounds over Bimetallic Molybdenum Catalysts (이금속성 형태 몰리브덴 촉매를 이용한 질소화합물의 반응속도 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • It is interesting to discover the reaction kinetics of the newly developed molybdenum containing catalysts. The dissociation/adsorption of nitrogen on molybdenum surface is known to be structure sensitive, which is similar to that of nitrogen on iron surface. The rates over molybdenum nitride catalysts are increased with the increase of total pressure. This tendency is the same as that for iron catalyst, but is quite different from that for ruthenium catalyst. The activation energies of the molybdenum nitride catalysts are almost on the same level, although the activity is changed by the addition of the second component. The reaction rate is expressed as a function of the concentration of reactants and products. The surface nature of $CO_3Mo_3N$ is drastically changed by the addition of alkali, changing the main adsorbed species from $NH_2$ to NH on the surface. The strength of $NH_x$ adsorption is found to be changed by alkali dopping.

Trace Measurement of Ruthenium by Adsorptive Stripping Voltammetry (벗김 전압전류법에 의한 루테늄의 미량 측정)

  • Czae, Myung Zoon;Kwon, Young Soon;Kim, So Jin
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.246-250
    • /
    • 1997
  • In the presence of optimum amounts of hydroxylamine, trace ruthenium(III) can be conveniently determined in acidic (boric) media by coupling catalytic hydrogen processes with adsorptive accumulation of the catalyst, using differential pulse voltammetry. Cyclic voltammetry was used to characterize the redox and interfacial processes. Optimal experimental conditions were found to be a stirred borate (0.015 M, pH 2.5) solution containing 0.55 M hydroxylamine, a preconcentration potential of - 0.70 V, and a scan rate of 5 mV/s. With a 7 min accumulation period the detection limit was 3${\times}$10-10 M. The possible interferences by other platinum group metals are investigated.

  • PDF