• 제목/요약/키워드: Rupture strength

검색결과 454건 처리시간 0.045초

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구 (An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets)

  • 최기선;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구 (Seismic Behavior of Steel Moment Connections with Different Structural Characteristics)

  • 조창빈
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

4점 굽힘시험에서 코디어라이트 세라믹 담체의 고온설계기준 (High Temperature Design Criteria of Cordierite Ceramic Substrate in Four-point Banding)

  • 백석흠;박재성;최현진;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.173-174
    • /
    • 2008
  • The four-point bending test is a widely used method to determine material parameters. The aim of the present study was to evaluate the flexural strength (or modulus of rupture) and the Weibull modulus of cordierite ceramic substrate by means of four-point bending tests. The strength data from experiments followed Weibull statistics. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near $200^{\circ}$. At temperatures well above $200^{\circ}C$ the available design strength can be as high as 65% as substrate's initial strength.

  • PDF

화학흡착(CVD)법에 의한 TiC 흡착 시 모재가 피복 길항합금의 항면력 및 접착력에 미치는 영향 (Effects of Composition of Substrate on Transverse Rupture Strength and Bonding Strength of Cemented Carbide Coated with Titanium Carbide by CVD Process)

  • 이건우;오재현
    • 한국표면공학회지
    • /
    • 제24권1호
    • /
    • pp.8-8
    • /
    • 1991
  • To investigate the effects of substrate on transverse-rupture strength(TRS) and bonding strength between substrate and TiC layer coated by CVD, two kinds of substrate (substrate A:WC-9.5wt%Co-MC*[low C], substrate B: WC-6wt% Co-MC*[high C] were studied in terms of Cobalt and C contents respectively. For preparation of test samples the coating parameters of deposition time, deposition temperature and deposition pressure were varied. The result show that the carbon contents in substrates have greater effects on the TRS of the CVD TiC coated cemented carbide than Co contents in substrates.

화학증착(CVD)법에 의한 TiC 증착 시 모재가 피복 초경합금의 항절력 및 접착력에 미치는 영향 (Effects of Composition of Substrate on Transverse Rupture Strength and Bonding Strength of Cemented Carbide Coated with Titanium Carbide by CVD Process)

  • 이건우;오재현;이주완
    • 한국표면공학회지
    • /
    • 제25권1호
    • /
    • pp.8-15
    • /
    • 1992
  • To investigate the effects of substrate on transverse-rupture strength(TRS) and bonding strength between substrate and TiC layer coated by CVD, two kinds of substrate (substrate A: WC-9.5wt% Co-MC*[low C], substrate B: WC -6wt% Co-MC*[high C]) were studied in terms of Cobalt and C contents respectively. For preparation of test samples the coating parameters of deposition time, deposition temperature and deposition pressure were varied. The results show that the carbon contents in substrates have greater effects on the TRS of the CVD TiC coated cemented carbide than Co contents in substrates. *MC:TiC+TaC

  • PDF

Effect of Sinter/HIP Technology on Properties of TiC-NiMo Cermets

  • Kollo, Lauri;Pirso, Juri;Juhani, Kristjan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.627-628
    • /
    • 2006
  • The present work is a study on the argon gas pressure effects of Sinter/HIP sintering on microstructure and strength of different grades of TiC-NiMo cermets. Titanium carbide in the composition of different grades of TiC-NiMo cermets was ranged from 40 to 80 wt.% and the ratio of nickel to molybdenum in the initial powder composition was 1:1, 2:1 and 4:1 respectively. On the sintered alloys, the main strength characteristic, transverse rupture strength (TRS) was measured. Furthermore, the microstructure parameters of some alloys were measured and the pressure effect on pore elimination was evaluated. All the results were compared with common, vacuum sintered alloys. The TRS values of TiC-NiMo cermets could be considerably improved by using Sinter/HIP technique, for high-carbide fraction alloys and for alloys sintered at elevated temperatures.

  • PDF

Characterization of Dental Resin Cement Containing Graphene Oxide

  • Kim, Duck-Hyun;Seok, Jae-Wuk;Sung, A-Young
    • 통합자연과학논문집
    • /
    • 제12권2호
    • /
    • pp.29-34
    • /
    • 2019
  • In dental resin cement studies, viscosity is also an important factor in the adhesion of tooth defects and implants. This study used BisGMA and HPMA as the main ingredients, triethylene glycol dimethacrylate (TEGDMA) as a diluent, and benzoyl peroxide (BPO) as a photoinitiator. The physical properties of graphene oxide used as an additive for functionality were evaluated, and its use as a dental resin cement material was investigated.The rupture strength has the tendency to increase along with the increase of the ratio of graphene oxide that was added, which seemed to reflect the effect of the high strength property of graphene oxide. The flexural strength also has the tendency to increase when about 0.5% of graphene oxide was added the same as the increase of rupture strength.When graphene oxide was added, according to viscosity use, the utilization as high-quality dental resin cements will increase.

Alloy 690 전열관의 크리프 변형 및 파단 거동 (Creep Deformation and Rupture Behavior of Alloy 690 Tube)

  • 김우곤;김종민;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.