• 제목/요약/키워드: Rupture Life

검색결과 271건 처리시간 0.025초

안경테소재 합금(Ti-6AI-4V)의 크리프 특성 (Creep Behaviours of Glasses Rim Material Alloy)

  • 황경충;윤종호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF

마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향 (The Effect of Surface Treatment on Creep Behaviors of Mg Alloy)

  • 강대민;안정오;강민철
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.

자동차부품 소재개발을 위한 알파 티타늄 합금의 용체화 처리후 정적 크리프 거동 (Creep Behaviour of Solution Treated Alpha Titanium Alloy for Automotive Parts)

  • 황경충;윤종호
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.153-158
    • /
    • 2005
  • Titanium alloy has widely been used as material for automotive parts because it has high specific strength. It is also light and harmless to human body. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with low different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the fallowing results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 7.5. And for the last, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture.

Effect of Test Zone Selection for Evaluating Bending Strength of Lumber

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.392-398
    • /
    • 2013
  • This study investigated the effect of test zone selection for evaluating bending strength of visually graded lumber. This will contribute to the understanding of two different methods under different standards. In method I, the major defect was randomly placed in the test specimen. In method II, the major defect was randomly placed in the maximum moment zone (MMZ). The results showed that the method II is more accurate for reflecting the effect of defects governing the grade of lumber. Unless the maximum strength-reducing defect (MSRD) is placed in MMZ, the evaluated value would be higher than that of MSRD. For evaluating the modulus of rupture (MOR) of visually graded lumber in test set-up of Method I, the Eq. (5) needs to be considered.

Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용 (Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel)

  • 김우곤;윤송남;류우석;이찬복
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

Alloy 690 전열관의 크리프 변형 및 파단 거동 (Creep Deformation and Rupture Behavior of Alloy 690 Tube)

  • 김우곤;김종민;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

마찰용접된 니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성 (High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 Jointed by Friction Welding)

  • 권상우;공유식;김선진
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.58-63
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steels jointed by friction welding wasinvestigated at the elevated temperatures of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture time and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 26.1, -22.4, 22.5, -18.5, 17.4, -14.3 and 6.9, -8.1, respectively. The stress exponents decreased with increasing creep temperature. The creep life prediction was derived by the Larson-Miller parameter (LMP) method and the result equation obtained is as follows: T(logtr+20)=-0.00148${\sigma}^2$-3.089${\sigma}$+23232. Finally, the results were compared with those of the base metal for Alloy718.

과실의 압축특성에 관한 연구 (Mechanical Behavior of Fruits under Compression Loading)

  • 홍지향;김창수;김재열;김진현;명병수;정종훈;박장우
    • Journal of Biosystems Engineering
    • /
    • 제30권5호
    • /
    • pp.280-284
    • /
    • 2005
  • Front the production on the farm to the consumer, agricultural products are subject to various physical treatments involving mechanical techniques and devices. It is essential to understand the physical laws governing the response of these biological materials so that the machines, processes, and handling operations can be designed fur maximum efficiency and the highest quality of the end products. A compression test system was developed to test the physical properties of fruits including apple, pear, and peach which may lead to a better understanding of the physical laws. The test system consisted of a digital storage oscilloscope and simple mechanism which can apply quasi-static compression to fresh fruits. Rupture force, energy, and deformation were measured at the five levels of compression speed from 1.25 to 62.5 mm/min for each internal and external tissues. Rupture forces for apple and pear were in the range of 42.2 to 46.2 N and 38.8 to 41.2 N for external and infernal tissues, respectively. Rupture forces fir peach external tissues were in the range of 48.2 to 54.0 N.

화학흡착(CVD)법에 의한 TiC 흡착시 하경사(TiN, TiCN)이 피복 길항합금의 항면력, 흡착력 및 공패수명에 미치는 영향 (Effects of Underlayer(TiN, TiCN) on Transverse Rupture Strength, Bonding Strength and Cutting Tool Life of Cemented Carbide Coated with Titanium Carbide by CVD Process)

  • 이건우;오재현;이규원
    • 한국표면공학회지
    • /
    • 제24권1호
    • /
    • pp.16-16
    • /
    • 1991
  • Generally brittle eta phase produced during TiC deposition has a effect on the TRS (transverse rupture strength ; thoughness). Therefore it is necessary to reduce eta(η), phase for the improvement of tool life. At this experiment some properties (TRS, bonding strength, tool life, eta phase)have been investigated by inserting TiN or TiCN underlayer between TiC layer and substrate. The results obtained were as follows; 1. by inserting underlayer eta phase were decreased and TRS was increased, but the bonding strength was decreased. 2. the diffusion of W, Co from the substrate was hindered by the underlayer. 3. TiC layer with TiCN underlayer had the finsest grain size. 4. by inserting underlayer (TiCN or TiN) the tool life was improved and especially notch and crater wear resistance was greatly improved.

화학증착(CVD)법에 의한 TiC 증착시 하부층(TiN, TiCN)이 피복 초경합금의 항절력, 접착력 및 공구수명에 미치는 영향 (Effects of Underlayer (TiN, TiCN) on Transverse Rupture Strength, Bonding Strength and Cutting Tool Life of Cemented Carbide Coated with Titanium Carbide by CVD Process)

  • 이건우;오재현;이주완
    • 한국표면공학회지
    • /
    • 제25권1호
    • /
    • pp.16-23
    • /
    • 1992
  • Generally brittle eta phase produced during TiC deposition has a bad effect on the TRS (transverse rupture strength ; thoughness). Therefore it is necessary to reduce eta(η) phase for the improvement of tool life. At this experiment some properties (TRS, bonding strength, tool life, eta phase) have been investigated by inserting TiN or TiCN underlayer between TiC layer and substrate. The results obtained were as fellows; 1. by inserting underlayer eta phase was decreased and TRS was increased, but the bonding strength was decreased. 2. the diffusion of W, Co from the substrate was hindered by the underlayer. 3. TiC layer with TiCN underlayer had the finsest gain size. 4. by inserting underlayer (TiCN or TiN) the tool life was improved and especially notch and crater wear resistance was greatly improved.

  • PDF