• Title/Summary/Keyword: Runx3

Search Result 108, Processing Time 0.021 seconds

Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation

  • Date, Yuki;Ito, Kosei
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.176-181
    • /
    • 2020
  • The RUNX transcription factors serve as master regulators of development and are frequently dysregulated in human cancers. Among the three family members, RUNX3 is the least studied, and has long been considered to be a tumor-suppressor gene in human cancers. This idea is mainly based on the observation that RUNX3 is inactivated by genetic/epigenetic alterations or protein mislocalization during the initiation of tumorigenesis. Recently, this paradigm has been challenged, as several lines of evidence have shown that RUNX3 is upregulated over the course of tumor development. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. We propose a simple explanation for the duality of RUNX3: p53 status. In this model, p53 deficiency causes RUNX3 to become an oncogene, resulting in aberrant upregulation of MYC.

Molecular Mechanism of Runx2-Dependent Bone Development

  • Komori, Toshihisa
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.168-175
    • /
    • 2020
  • Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.

Increased Oxidative Stress and RUNX3 Hypermethylation in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma (HCC) and Induction of RUNX3 Hypermethylation by Reactive Oxygen Species in HCC Cells

  • Poungpairoj, Poonsin;Whongsiri, Patcharawalai;Suwannasin, Surasit;Khlaiphuengsin, Apichaya;Tangkijvanich, Pisit;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5343-5348
    • /
    • 2015
  • Promoter hypermethylation of the runt-related transcription factor 3 (RUNX3) gene is associated with increased risk of hepatocellular carcinoma (HCC). Oxidative stress plays a vital role in both carcinogenesis and progression of HCC. However, whether oxidative stress and RUNX3 hypermethylation in HCC have a cause-and-effect relationship is not known. In this study, plasma protein carbonyl and total antioxidant capacity (TAC) in patients with hepatitis B virus (HBV)-associated HCC (n=60) and age-matched healthy subjects (n=80) was determined. RUNX3 methylation in peripheral blood mononuclear cells (PBMC) of subjects was measured by methylation-specific PCR. Effect of reactive oxygen species (ROS) on induction of RUNX3 hypermethylation in HCC cells was investigated. Plasma protein carbonyl content was significantly higher, whereas plasma TAC was significantly lower, in HCC patients than healthy controls. Based on logistic regression, increased plasma protein carbonyl and decreased plasma TAC were independently associated with increased risk for HCC. PBMC RUNX3 methylation in the patient group was significantly greater than in the healthy group. RUNX3 methylation in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells was significantly higher than in untreated control cells. In conclusion, increase in oxidative stress in Thai patients with HBV-associated HCC was demonstrated. This oxidative increment was independently associated with an increased risk for HCC development. RUNX3 in PBMC was found to be hypermethylated in the HCC patients. In vitro, RUNX3 hypermethylation was experimentally induced by $H_2O_2$. Our findings suggest that oxidative stress is a cause of RUNX3 promoter hypermethylation in HCC cells.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • v.16 no.3
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi;Heo, Sun-Hee;Kim, Jae-Young;Lee, Jae-Mok;Ryoo, Hyun-Mo;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.86-90
    • /
    • 2009
  • Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

Role of RUNX Family Transcription Factors in DNA Damage Response

  • Samarakkody, Ann Sanoji;Shin, Nah-Young;Cantor, Alan B.
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.

Overexpression of RUNX3 Inhibits Malignant Behaviour of Eca109 Cells in Vitro and Vivo

  • Chen, Hua-Xia;Wang, Shuai;Wang, Zhou;Zhang, Zhi-Ping;Shi, Shan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1531-1537
    • /
    • 2014
  • Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

Expression of RUNX3 in Human Gastric Cancer (위암에서 RUNX3 발현의 임상적 의의)

  • Jang, Sung-Hwa;Shin, Dong-Gue;Kim, Il-Myung;You, Byung-Ook;Yoon, Jin;Park, Sang-Su;Kang, Sung-Gu;Lee, Yun-Kyung;Heo, Su-Hak;Cho, Ik-Hang
    • Journal of Gastric Cancer
    • /
    • v.7 no.4
    • /
    • pp.185-192
    • /
    • 2007
  • Purpose: RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer. In the present study, we examined the pattern of RUNX3 expression in gastric cancer cells from gastric cancer specimens and the impact of its alteration on clinical outcome. Materials and Methods: A total of 124 samples of both gastric cancer and normal tissue were obtained from 124 patients who underwent curative gastrectomy at the Seoul Medical Center from January 2001 to December 2005. RUNX3 expression was determined by immunohistochemical staining, and the results were analyzed. Statistical analysis wabased on clinicopathological findings and differences in survival rates. Results: The mean age of the patients was 61 years, and the male:female ratio was 1.9:1. The expression rate of RUNX3 was 59.7% (74/124). The expression rate was higher in differentiated gastric cancers (nucleus: 9.1%, cytoplasm: 57.6%) than in the undifferentiated types (nucleus: 5.2%, cytoplasm: 46.6%) (P=0.133). The 5-year survival rates according to RUNX3 expression determined from cancer tissue were 88.9% for the nucleus $\pm$ cytoplasm(+) group of patients, 76.1% for the cytoplasm only (+) group of patients, and 65.3% for the RUNX3 negative expression group of patients (P=0.626). Only UICC TNM staging showed statistical significance related to the survival rate, as determined by multivariate analysis. Conclusion: The RUNX3 expression rate was higher in differentiated gastric cancer than in the undifferentiated types without significance. Although RUNX3 expression predicted better survival, based on multivariate analysis, the finding was not statistically significant. More cases should be further evaluated.

  • PDF

RUNX1 Upregulation Causes Mitochondrial Dysfunction via Regulating the PI3K-Akt Pathway in iPSC from Patients with Down Syndrome

  • Yanna Liu;Yuehua Zhang;Zhaorui Ren;Fanyi Zeng;Jingbin Yan
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.219-230
    • /
    • 2023
  • Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content, and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.