• Title/Summary/Keyword: Runoff ratio

Search Result 319, Processing Time 0.04 seconds

Urban Flood Simulation Considering Buildings Resistance Coefficient Based on GIS: Focused on Samcheok City (건물 저항계수에 따른 GIS기반의 밀집 시가지 침수모의 -삼척시가지를 중심으로-)

  • Ji, Juong-Hwan;Kang, Sang-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.211-220
    • /
    • 2010
  • The objective of this paper presents the application of an "integrated urban flood modeling-runoff model, urban flood model and sewer system model-" in a highly urbanized area of Samcheok where is seriously inundated in 2002 and 2003. For this, we demonstrate how couple a 1-D hydrodynamic model of the river, a 2-D hydrodynamic model of the overland (surface) flow, and a sewer network model including each boundary conditions. In order to make data file for the model, topographic information like elevation and share rate of buildings are directly extracted from DEM or topographical source data without data exchange to avoid uncertainty errors. Furthermore, the research is to assess the impacts of Manning n and buildings influences to inundated depth by changing its share ratio from 10 % to 30 % in low-land urban area. As a results, we found out that the urban inundated depth was decreased by Manning n but increased by buildings ratio. The calculated results of inundation was similar with observed one in 2002 and 2003 flooding. Furthermore, the area was also inundated under not riverbank break case in 2002 flooding.

A Study on Estimate of Sediment Yield Using Tank Model in Oship River Mouth of East Coast (Tank 모형을 이용한 동해안 오십천 하구의 유사량 평가에 관한 연구)

  • Kang, Sank-Hyeok;Ok, Yong-Sik;Kim, Sang-Ryul;Ji, Jeong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.268-274
    • /
    • 2011
  • BACKGROUND: A large scale of sediment load delivered from watershed causes substantial waterway damages and water quality degradation. Controlling sediment loading requires the knowledge of the soil erosion and sedimentation. The various factors such as watershed size, slope, climate, land use may affect sediment delivery processes. Traditionally sediment delivery ratio prediction equations have been developed by relating watershed characteristics to measured sediment yield divided by predicted gross erosion. However, sediment prediction equations have been developed for only a few regions because of limited sediment data. Besides, little research has been done on the prediction of sediment delivery ratio for asia monsoon period in mountainous watershed. METHODS AND RESULTS: In this study Tank model was expanded and applied for estimating sediment yield to Oship River of east coast. The rainfall-runoff in 2006 was verified using the Tank model and we derived good result between observed and calculated discharge in 2009 at the same conditions. In relation to sediment yield, the sediment delivery rate of 2006 was very high than 2009 regardless of methods for estimating sediment load. It was thought to be affected by heavy rainfall due to the typhoon. CONCLUSION(s): For estimating sediment volume from watershed, long-term monitoring data on discharge and sediment is needed. This model will be able to apply to predict discharge and sediment yield simultaneously in ungauged area. This approach is more effective and less expensive method than the traditional method which needs a lot of data collection.

Physiochemical Characteristics of Coastal Pseudo-Estuarine Environment Formed During the Summer Flood season in the South Coast of Korea (한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리 -화학적 특성)

  • 임동일;엄인권;전수경;유재명;정회수
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, we investigated the physiochemical characteristics of temporal estuarine environment formed during the summer flood season (consecutive rainy days with average 50 mm day$^{-1}$ precipitation) in the coastal area of South Sea of Korea. The freshwater from the Seomjin River was characterized by lower temperature, salinity and pH, and high concentrations of COD and nutrients. In the summer flood season, such peculiar Somejin-River freshwater was dispersed southward along the coast of Yeosubando-Dolsando-Geumodo, form-ing temporal estuarine environment (defined as "Coastal Pseudo-Estuary" in this study) throughout the entire study area (as far as 60 km from the Seomjin River mouth). Compared to the winter dry season, the DIN/DIP ratio was almost doubled (16-36) during the summer flood season. This excessive nitrate supply during the summer flood season was probably due to nitrogenous fertilizer. Distribution and behaviors of physiochemical factors in this coastal pseudo-estuarine environment were controlled not only by the runoff of the Seomjun River (physical mixing of river water with seawater) but also by the biogeochemical estuarine processes which are mostly similar to those of the river estuary.r estuary.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons (PAHs) In the Column Sediments around Gwangyang Bay (광양만 주변해역 주상퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seck;Cho, Chon-Rae;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.257-266
    • /
    • 2008
  • PAHs are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organisms. This study was carried out to survey the contamination of PAHs in the column sediments around Gwangyang bay. Yeosu petrochemical industrial complex, POSCO(Pohang steel compony) and Gwangyang container harbor are located near the bay. The column sediments were collected at 4 stations(A, B, C and D) and fractionated at intervals of two-centimeter depth on July 29, 1999. PAHs in colmn sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS. PAHs compounds were analyzed and found to be 13 species. Total PAHs concentrations in the column sediments ranged from 275.04 to 2,838.64${\mu}g/kg$ dry wt. Naphthalene had the highest concentration in the range of 40.60 to 2,294.06${\mu}g/kg$ dry wt. and Anthracene had the lowest concentration in the range of 2.63 to 11.30${\mu}g/kg$ dry wt. The correlation coefficients between individual PAHs and total PAHs in the column sediments were relatively higher in the low molecular compounds such as Naphthalene, Acenaphthylene and Phenanthrene. The relationship between the P/A(Phenanthrene/Anthracene)ratio and F/P(Fluoranthene/Pyrene)ratio showed that P/A ratio was generally above 10 and F/P ratio was above 1 in all sediment samples. These data indicate that PAHs in the column sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin The values of PAHs in the column sediments were lower than the biological effect guidelines.

  • PDF

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons(PAHs) in the Surface Sediments Around Gwangyang Bay (광양만 주변해역 표층퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seok;Choi, Young-Chan;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.9-20
    • /
    • 2007
  • PAHs(Polycyclic Aromatic Hydrocarbons) are widespread contaminants in the marine environment. They are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organism The contamination of PAHs in the coastal environments has not been well known yet in Korea. This study was carried out to survey the contamination of PAHs in sediments around Gwangyang bay. The Yeosu petrochemical industrial complex, POSCO(Pohang steel company) and Gwangyang container harbor are located around the bay. PAHs in sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS(Gas Chromatography-Mass Spectrometry) TOC(Total Organic carbon) and textural parameters in sediment samples were also analyzed 13 species of PAHs were detected at all of the surface sediments. Total PAHs concentrations in the surface sediments ranged from 171.40 to $1013.54{\mu}g/kg$ dry wt.. In most of the surface sediments, Naphthalene was the highest in the range of 14.08 to $691.39{\mu}g/kg$ dry wt. and Anthracene was the lowest in the range of 0.49 to $22.66{\mu}g/kg$ dry wt.. The correlation coefficients between individual PAHs and Total PAHs in the surface sediments were relatively higher in the low molecular compounds such as Naphthalene and Phenanthrene. In the relationship of the P/A(Phenanthrene/Anthracene) ratio and F/P(Fluoranthene/Pyrene) ratio, P/A ratio was generally above 10 and F/P ratio was shown to be above 1 in all sediment samples. These data indicate that PAHs in sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin. Total PAHs in the surface sediments were correlated with TOC and textural parameters. The values of PAHs in the surface and core sediments were lower than the biological effect guidelines.

  • PDF

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

Effect of Drip Irrigation on Soil Salinity Control and Growth of Cabbage at the newly reclaimed tidal lands in Korea (점적관수가 토양염농도 제어와 배추의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.492-499
    • /
    • 2009
  • Effect of drip irrigation on soil salinity control and growth of vegetable crops was studied in the three reclaimed lands of Korea in 2007. Drip irrigation was done one or two times per month for reduction of salt stress by using vinyl hose with tiny holes laid on ridge surface under black plastic film mulch during growing season of cabbage and chinese cabbage. It was observed that drip irrigation was generally effective to soil salinity control, but soil salinity variation of some place was not fully solved to lower down under level of free salt stress. It is also considered that high salinity of runoff water spilled out from cultivation ridge plays another key role for soil salinity management. Consequentially, this soil salinity variation might be one of factors brought low average yield and low commercial ratio of agricultural products. Relation between soil salinity and head growth of cabbage and chinese cabbage was well expressed as logarithmic function. Surface soil EC to reach at 50% of growth reduction to the heaviest head can be estimated was $6.1dS^{\circ}{\S}m^{-1}$ for cabbage and $5.7dS\;m^{-1}$ for chinese cabbage transplanted at optimum season.

SWAT model calibration/validation using SWAT-CUP I: analysis for uncertainties of objective functions (SWAT-CUP을 이용한 SWAT 모형 검·보정 I: 목적함수에 따른 불확실성 분석)

  • Yu, Jisoo;Noh, Joonwoo;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • This study aims to quantify the uncertainty that can be induced by the objective function when calibrating SWAT parameters using SWAT-CUP. SWAT model was constructed to estimate runoff in Naesenong-cheon, which is the one of mid-watershed in Nakdong River basin, and then automatic calibration was performed using eight objective functions (R2, bR2, NS, MNS, KGE, PBIAS, RSR, and SSQR). The optimum parameter sets obtained from each objective function showed different ranges, and thus the corresponding hydrologic characteristics of simulated data were also derived differently. This is because each objective function is sensitive to specific hydrologic signatures and evaluates model performance in an unique way. In other words, one objective function might be sensitive to the residual of the extreme value, so that well produce the peak value, whereas ignores the average or low flow residuals. Therefore, the hydrological similarity between the simulated and measured values was evaluated in order to select the optimum objective function. The hydrologic signatures, which include not only the magnitude, but also the ratio of the inclining and declining time in hydrograph, were defined to consider the timing of the flow occurrence, the response of watershed, and the increasing and decreasing trend. The results of evaluation were quantified by scoring method, and hence the optimal objective functions for SWAT parameter calibration were determined as MNS (342.48) and SSQR (346.45) with the highest total scores.