DOI QR코드

DOI QR Code

A Study on Estimate of Sediment Yield Using Tank Model in Oship River Mouth of East Coast

Tank 모형을 이용한 동해안 오십천 하구의 유사량 평가에 관한 연구

  • Kang, Sank-Hyeok (Environmental Institute, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sang-Ryul (Graduate School of Disaster Prevention, Kangwon National University) ;
  • Ji, Jeong-Hwan (Department of Civil & Environmental Engineering, Kyungwon University)
  • 강상혁 (강원대학교 환경연구소) ;
  • 옥용식 (강원대학교 바이오자원환경학과) ;
  • 김상률 (강원대학교 방재전문대학원) ;
  • 지정환 (강원대학교 방재전문대학원)
  • Received : 2011.09.19
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

BACKGROUND: A large scale of sediment load delivered from watershed causes substantial waterway damages and water quality degradation. Controlling sediment loading requires the knowledge of the soil erosion and sedimentation. The various factors such as watershed size, slope, climate, land use may affect sediment delivery processes. Traditionally sediment delivery ratio prediction equations have been developed by relating watershed characteristics to measured sediment yield divided by predicted gross erosion. However, sediment prediction equations have been developed for only a few regions because of limited sediment data. Besides, little research has been done on the prediction of sediment delivery ratio for asia monsoon period in mountainous watershed. METHODS AND RESULTS: In this study Tank model was expanded and applied for estimating sediment yield to Oship River of east coast. The rainfall-runoff in 2006 was verified using the Tank model and we derived good result between observed and calculated discharge in 2009 at the same conditions. In relation to sediment yield, the sediment delivery rate of 2006 was very high than 2009 regardless of methods for estimating sediment load. It was thought to be affected by heavy rainfall due to the typhoon. CONCLUSION(s): For estimating sediment volume from watershed, long-term monitoring data on discharge and sediment is needed. This model will be able to apply to predict discharge and sediment yield simultaneously in ungauged area. This approach is more effective and less expensive method than the traditional method which needs a lot of data collection.

본 연구에서는 유량 및 유사량 자료가 부족한 미계측 유역에 대해 Tank모형을 확장하여 궁극적으로 유사량을 평가하는 방법을 제시하였다. 적용 유역은 동해안 타 유역에 비해 유량자료가 확보되어 있는 오십천을 대상으로 집중호우기의 토사유출 특징과 하천의 토사유달률을 구하였다. 본 연구의 주요 결과는 다음과 같다. 1) 실측에 의한 유사량의 산정에 있어서는 먼저 유사량 관계식(sediment rating curve)의 개발이 선행되어야 한다. 본 연구에서는 유량 산정지점에 대해 유량과 병행하여 유사량 관계식을 다음과 같이 구하였다. 오십천 유량-유사량 관계식 : $Q_s=6.017Q^{1.374}$ 2) Tank모형을 적용하여 2006년 강우유출량을 산정한 결과 관측값과 유사한 값($RMSE=1.26m^3/day$)을 얻을 수 있었다. 3) 대상지역의 2006년과 2009년의 연평균 토사전달율 을 비교한 결과 태풍에 따른 집중강우가 있었던 2006년의 토사전달율이 평년의 2009년에 비해 현저하게 높았는데 이는 급격한 강우유출량의 증가에 따른 것이라 보인다. 4) 개량된 Tank모형에 의한 유량 및 토사유출량은 기존의 SRC방법과 비교했을 경우 유사한 경향을 보였으며 이는 향후 유량과 유사량 자료가 부족한 유역에 대해 효과적으로 적용할 수 있을 것으로 본다.

Keywords

References

  1. Ackers, P., White, W. R., 1973. Sediment transport: New approach and analysis, J. Hydraul. Eng. 99, 2041-2060.
  2. Baban, S. M. J., 2001. Modelling soil erosion in tropical environments using remote sensing and geographical information systems, Hydrol. Sci. J. des Sci. Hydrol. 46(2), 191-198. https://doi.org/10.1080/02626660109492815
  3. Boyce, R. C., 1975. Sediment routing with sediment delivery ratios. In present and prospective technology for predicting sediment yields and sources, ARS-S-40, USDA-ARS.
  4. Colby, B. R., 1964. Practical computation of bed material discharge, J. Hydraul. divis. ASCE. 90, 217-246.
  5. Heather, L., Kanesa, M. D., Zoe, N., 2009. Sorting out sediemnt grain size and plastic pollution. Hands-on Oceanography. 22(4), 244-250. https://doi.org/10.5670/oceanog.2009.117
  6. Kang, S. H., 2009. The application of integrated urban inundation model in Republic of Korea, Hydrol. Process. 23, 1642-1649. https://doi.org/10.1002/hyp.7297
  7. Kim, C. W., Kim, H. S., Yu, K. K., Woo, H. S., 1993. Development of methods for estimating sediment yield rate(II) - development of method-, Korean Soci. Civil Engi. 13(1), 131-140.
  8. Klaghofer, E., Summer, W., Villeneuve, J. P., 1992. Some remarks on the determination of the sediment delivery ratio, Erosion, Debris Flows and Environment in Mountain Regions, Proc. Cheng Sypo. IAHS. 209, 113-118.
  9. Lee, M. B., Kim, N. S., Jin, S. Z. and Kim, H. D., 2008. A study on the soil erosion by landuse in the Imjin River basin DMZ of central Korea, Korean Geogra. Soci. 43(3), 263-275.
  10. Markus, M., Demissie M., 2006. Predictability of Annual Sediment Loads Based on Flood Events, J. Hydrol. Engi. ASCE. 11(4), 354-361. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(354)
  11. Renard, K. G., Foster, G.R., Weesies, G.A. and Porter, J. P. 1991. RUSLE: Revised Universal Soil Loss Equation, J. Soil Water Conser. 46(1), 30-33.
  12. Walling D. E., 1983. The sediment delivery problem, J. Hydrol. 65, 209-237. https://doi.org/10.1016/0022-1694(83)90217-2
  13. Yang, C. T., 1984. Unit stream power equation for gravel, J. Hydraul. divi. ASCE. 110, 1783-1797. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1783)
  14. Yoon, K. S., Kim, C. W., Woo, H., 2009. Application of RUSLE for erosion estimation of construction sites in coastal catchments, J. Coastal Res. 56, 1696-1700.