• Title/Summary/Keyword: Runoff prediction

Search Result 237, Processing Time 0.024 seconds

Forecasting Monthly Runoff Using Ensemble Streamflow Prediction (앙상블 예측기법을 통한 유역 월유출 전망)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Hwang, Man-Ha;Maeng, Seung-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

A Study on the Safety Management of Streamflows by the Kalman Filtering Theory (Kalman Filtering 이론에 의한 하천 유출 안전관리에 관한 연구)

  • 박종권;박종구;이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1996
  • The purpose of this study has been studied and investigated to prediction algorithms of the Kalman Filtering theory which are based on the state-vector description, including system identification, model structure determination, parameter estimation. And the prediction algorithms applied of rainfall-runoff process, has been worked out. The analysis of runoff process and runoff prediction algorithms of the river-basin established, for the verification of prediction algorithms by the Kalman Filtering theory, the observed historical data of the hourly rainfall and streamflows were used for the algorithms. In consisted of the above, Kalman Filtering rainfall-runoff model applied and analysised to Wi-Stream basin in Nak-dong River(Basin area : $472.53km^2$).

  • PDF

Stochastic Multiple Input-Output Model for Extension and Prediction of Monthly Runoff Series (월유출량계열의 확장과 예측을 위한 추계학적 다중 입출력모형)

  • 박상우;전병호
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.81-90
    • /
    • 1995
  • This study attempts to develop a stochastic system model for extension and prediction of monthly runoff series in river basins where the observed runoff data are insufficient although there are long-term hydrometeorological records. For this purpose, univariate models of a seasonal ARIMA type are derived from the time series analysis of monthly runoff, monthly precipitation and monthly evaporation data with trend and periodicity. Also, a causual model of multiple input-single output relationship that take monthly precipitation and monthly evaporation as input variables-monthly runoff as output variable is built by the cross-correlation analysis of each series. The performance of the univariate model and the multiple input-output model were examined through comparisons between the historical and the generated monthly runoff series. The results reveals that the multiple input-output model leads to the improved accuracy and wide range of applicability when extension and prediction of monthly runoff series is required.

  • PDF

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

Evaluation of Runoff Prediction from Managed Golf Course using WEPP Watershed Model (WEPP 모형을 이용한 골프장 잔디 관리에 따른 유출특성 모의)

  • Choi, Jaewan;Shin, Min Hwan;Ryu, Ji Chul;Kum, Donghyuk;Kang, Hyunwoo;Cheon, Se Uk;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • It has been known that Golf course could impose negative impacts on water-ecosystem if pollutant-laden runoff is not treated well. It is important to control non-point source and re-use treated wastewater from the golf course to secure water quality of receiving waterbodies. At golf courses, the rainfall-runoff is affected by various practices to manage grasses. In many hydrological modelings, especially in simple rainfall-runoff modeling, effects on runoff of plant growth and cutting are not considered. In the study, the water erosion prediction project (WEPP), capable of simulating plant growth and various management, was evaluated for its runoff prediction from golf course under grass cutting and irrigation. The %Difference, $R^2$ and the NSE for runoff comparisons were 1.15%, 0.93 and 0.92 for calibration, and 18.12%, 0.82 and 0.88 for validation period, respectively. In grass cutting scenario, grass height was managed to be 18~25 mm. The estimated runoff was decreased by 27%. The difference in estimated total runoff was 11.8% depending on irrigation. As shown in this study, if grass management and irrigation are well-controlled, water quality of downstream areas could be obtained.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

Study on Pesticide Runoff from Soil Surface-III - Runoff of Pesticides by Simulated Rainfall in the Laboratory - (농약의 토양 표면유출에 관한 연구-III - 실내에서 인공강우에 의한 농약의 유출특성 -)

  • Yeom, Dong-Hyuk;Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Park, Chang-Kyu;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.334-341
    • /
    • 1997
  • In the laboratory experiment, concentration and rate of runoff of 7 pesticides were measured under the simulated rainfall. Total runoff rate of metolachlor, alachlor, chlorothalonil, chlorpyrifos, EPN, phorate and captafol were 57.0, 14.2, 13.2, 7.9, 7.2, 7.1 and 2.8%, respectively, and the average runoff concentrations were 940, 399, 55, 7.0, 9.3, 151 and 7.0 ppb, respectively. Significant relationship was observed between the runoff rate and water solubility in the laboratory experiment(r=0.923). Even though not very high, relatively significant results were obtained in other experimental conditions. Based on the results, runoff rate prediction$[Y=0.2812{\times}10exp(0.261logWS-0.366)+0.3594{\times}10exp(-0.545logKoc+1.747)+0.3594{\times}10exp(-0.362log\;Kow+1.105]$ and conversion equations were calculated to investigate the possibility of estimating runoff rate in the field by natural rain. Calculated runoff rate by conversion equation was similar to experimental result with captafol in the field while 6 times higher result was obtained by the prediction equation. Therefore, those prediction and conversion equations derived from the laboratory experiment data and physicochemical properties of the pesticides could be used for the prediction of field runoff rate of pesticides by natural rainfall.

  • PDF

RUNOFF ANALYSIS BY SCS CURVE NUMBER METHOD

  • Yoon, Tae-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.21-32
    • /
    • 1993
  • The estimates of both runoff depth and peak runoff by the basin runoff curve numbers, which are CN-II for antecedent moisture condition- II and CN -III for antecedent moisture condition-III, obtained from hydrological soil-cover complexes of 26 watersheds are investigated by making use of the observed curve numbers, which are median curve number and optimum curve number, computed from 250 rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of both runoff depth and peak runoff. For ungaged basin, found is that for the estimate of runoff depth CN-II is adequate and for peak runoff CN-II is suitable. Also investigated is the variation of the runoff curves during storms. By the variable runoff curve numbers, the prediction of runoff depth and peak runoff can be improved slightly.

  • PDF

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.