• Title/Summary/Keyword: Runoff Water Amount

Search Result 327, Processing Time 0.02 seconds

Analysis to Select Filter Media and The Treatment Effect of Non-point Pollution Source in Road Runoff

  • Lee, Tae Goo;Han, Young Hae
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.55-63
    • /
    • 2014
  • This study selected and analyzed filter media that can be applied in non-point pollution reduction devices aimed at processing the source of pollution on site for road runoff that increases rapidly in rainfall-runoff in order to improve the water quality of urban areas. First, the factors that affect the quality of runoff caused by sources of non-point pollution include physical and social factors such as the usage of land around the area of water collection, type of pavement and movement of cars and people, as well as rainfall characteristics such as frequency, intensity, amount and duration of rainfall. Second, the purification tests of the filter media were processed for pH, BOD, COD and T-P, and the filter media showed to have initial purification effect at that items. However, the filter media showed to be very effective for the processing of SS, T-N, Zn and Cd from the beginning to the end. Third, for filter media, zeolite and vermiculite showed to be effective for processing SS, T-N, Zn and CD constantly, and composite filter media including zeolite showed to have strong processing effects. The authors conclude that this study can be applied to technical areas and policies aimed at reducing non-point pollution in urban areas and can also contribute to allowing eco-friendly management of rainfall as well as improvement of water quality.

A Practical Research for More Efficient Utilization of Water Resources in the South-Western Part of Korea (서남부지역 수자원의 효율적 이용방안)

  • 김현영;서영제;최용선;문종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.279-286
    • /
    • 1998
  • The south-western part of Korea is situated in an unbalance of water supply and demand relating to the Keum, Mankyung, Dongjin and Youngsan River and their estuary reservoirs. For example, the Keum River estuary reservoir is discharging the larger amount of yearly runoff into the sea due to the small storage capacity, while Saemankeum estuary reservoir which is under construction, has the smaller runoff amount comparing with its storage capacity, And the downstream area of the Youngsan River, such as Youngkwang, Youngam are deficient in water due in larger demand and smaller supply. In order to solve the above unbalanced water supply and demand and also to improve the water use efficiency, the Hierarchical Operation Model for Multi-reservoir System(HOMMS) has been developed and applied to analyze the multi-reservoir operation assuming that the above reservoirs were linked each other. The result of this study shows that 2,148MCM of annual additional water requirement for agricultural and rural water demands are required in this region at 2011 of target year, and these demands can be resolved by diverting and reusing 1,913MCM of the released water from the estuary reservoirs into the sea.

  • PDF

Runoff of Trifluralin from Fields in Louisiana (Louisiana의 농장에서 Trifluralin의 유출)

  • ;S.E. Feagley
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.585-592
    • /
    • 1996
  • Trifluralin (2, 6-dinitro-N, N-dipropyl-4- (trifluormethyl) benzenamine) was applied preemergent to soybean in plots drained or nondrained, in louisiana. Plots 14.6 ha were arranged to give 1683 g/ha of trifluralin. The half life of trifluralin in the top 15 cm of soil was 42.6 darts and f6.0 days in nondrained plot and drained plot, respectively. The concentrations of trifluralin in surface runoff water and subsurface runoff water were 0.62 ng/ml-0.02 ng/ml and 11.06 ng/ml-0.02 ng/ml, respectively. The concentration of trifluralin in runoff water was smaller than 2 ng/ml for trifluralin of U.S. Environmental Protection Agency advisory. Total loss of trifluralin in runoff water was 0.021 % of applied amount at drained plots during three month after application. Trifluralin was moved hardly in the water. Subsurface drainage -reduced trifluralin losses because concentration of trifluralin in the subsurface runoff water in drained fields was low.

  • PDF

The Impacts of Runoff the Nonpoint Source Pollution and Soil Physical Change for Mountainous Management Practice (고랭지 영농방법이 비점원오염 물질의 유출과 토양의 물리적 변화에 미치는 영향)

  • 최중대;강태영;김도찬
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.521-526
    • /
    • 1998
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and soils to assess runoff the nonpoint source pollution and soil physical change in mountainous soils. Eleven 3 $\times$ 15 m runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil physical change, and discharge of nonpoint source pollutant. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge.

  • PDF

field Study on Effects of Runoff Reduction in the Infiltration Collector Well (현장자료를 이용한 침투집수정의 유출저감 효과에 관한 연구)

  • Jang, Bok-Jin;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.611-618
    • /
    • 2002
  • In order to investigate the performance of the infiltration collector well and its effect on the runoff reduction, real-time field measurements are carried out. Based on these field data measured at Seongnam, Osan and Cheongju sites, the runoff reduction volumes and the peaks-cut-rate are quantitatively analyzed and compared with the total rainfall amount, the 10min averaged and the 10min maximum rainfall intensity. This results show that the infiltration collector well is very effective to reduce the runoff in urban area, which gives environmentally the positive to supply ground waters. It is also presented that the infiltration collector well is able to reduce up to 70% of the runoff and 40~70% of peaks, compared to a general one.

Estimation of Rainfall-runoff Erosivity Using Modified Institute of Agricultural Sciences Index (수정 IAS 지수를 이용한 강우침식인자 추정)

  • Lee, Joon-Hak;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.619-628
    • /
    • 2011
  • The purpose of this study is to evaluate the existing method of calculating rainfall-runoff erosivity using monthly precipitation, such as Fournier's index, modified Fournier's index, IAS (Institute of Agricultural Sciences) index, etc., and to present more reasonable regression model based on monthly rainfall data in Korea. This study introduced a new simplified method of calculating rainfall-runoff erosivity based on monthly precipitation, called by modified IAS index. It was expanded form IAS index which is the simple calculation method by summing up the rainfall amount of two months with maximum amount. Monthly precipitation and annual rainfall-runoff erosivity at 21 weather stations for over 25 years were used to analyze correlation relationship and regression model. The result shows that modified IAS index is the more reasonable parameter for estimating rainfall-runoff erosivity of the middle-western and south-western regions in Korea.

A Tank Model Application to Soyanggang Dam and Chungju Dam with Snow Accumulation and Snow Melt (적설 및 융설 모의를 포함한 탱크모형의 소양강댐 및 충주댐에 대한 적용)

  • Lee, Sang-Ho;An, Tae-Jin;Yun, Byung-Man;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.851-861
    • /
    • 2003
  • Snow accumulation and snow melt was simulated and included in the computation of the watershed runoff for Soyanggang Dam and Chungju Dam. A modified Tank Model was used for the simulation, which has three serial tanks and a pulse response function. The model parameters were estimated through the global optimization method of Shuffled Complex Evolution-University of Arizona (SCE-UA). A watershed was divided into four zones of elevation. The temperature decrease of the zones was a rate of -0.6$^{\circ}C$/100m. Almost all precipitation from December to February become accumulated as snow, and then the snow melts and runs off from March to April. The average runoff with snow melt was greater than the average runoff without snow melt during the period from March to April. The improved amount from snow melt simulation was about one fifth of the observed one for Soyanggang Dam. The increased amount for Chungju Dam was about one fourth of the observed average runoff during the same period. Although the watershed runoff was simulated including snow melt, it was less than the observed one for both of the dams.

A Study on the Estimation of the Available Water Resources in Korea (유역별 가용수자원의 추정 연구)

  • Choe, Jong-Geun;Yun, Se-Ui;Lee, Won-Hwan
    • Water for future
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 1983
  • A STUDY ON THE ESTIMATION OF THE AVAILABLE WATER RESOURCES IN KOREA The purpose of this study is to present the estimated the total amount of runoff in Korea. The annual mean runoff is estimated by cumulating daily discharges that obtaine from daily stages on the rating curve. The selected five major gaging stations(Indogyo, Gyuam, Jindong, Naju, and Songjeong) to take the daily discharges stand for the five major streams such as the Han River, the Geum River, the Nokdong River, the Yeongsan River and the Seomjin River. The results of this study are as follows; 1) The maximum quantity of the total available water resources is estimated at 26,900 million cubic meters, the minimum is 24,300 million, and the annual mean quantity is 25,600 million 2) The annual mean rate of runoff is evaluated about 58 percent in the five major basins. 3) The annual mean rate of runoff over inland is estimated about 57 percent as a result of assuming the runoff rate of 5 zone about 80 percent, the annual mean rate of runoff is estimated about 56 percent except for V-zone in analysis.

  • PDF

Runoff Characteristics of Total-N and Total-P in Upland Surface Runoff Treated with Livestock Manure Compost (가축분뇨 퇴비가 시비된 밭 표면유출수의 총질소와 총인의 유출 특성)

  • Choi, Jin Kyu;Son, Jae Gwon;Lee, Hyun Jeong;Kim, Young Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • This study was carried out to runoff characteristics in an upland livestock manure compost. Irrigation, runoff and water quality data in the upland were analyzed periodically from May to November in 2011. The observed amount of rainfall, irrigation, runoff for the experimental upland during the investigation period were 1,299.7 mm, 32.0 mm, and 340.7 mm, respectively. The concentrations of T-N in compost and non-compost upland during study period were ranged from 2.09 mg/L to 6.66 mg/L and from 1.99 mg/L to 6.01 mg/L, respectively. which was generally higher than the quality standard of agricultural water (1.0 mg/L). The concentrations of T-P in compost and non-compost upland during study period were ranged from 0.069 mg/L to 0.525 mg/L and from 0.018 mg/L to 0.152 mg/L, respectively. The runoff pollutants loadings of T-N and T-P in compost upland were 10.05 kg/ha and 0.56 kg/ha, respectively. The runoff pollutants loadings of T-N and T-P in non-compost upland were 9.09 kg/ha and 0.26 kg/ha, respectively. The runoff pollutants loadings in T-N and T-P from this study were much lower values than the pollutant loadings of T-N and T-P from the upland published by the others studies. Runoff pollution loadings due to the upland field in order to identify the characteristics of various crops, farming methods and a variety of targets taking into account regional characteristics by conducting continuous monitoring runoff load estimate will be required.

Application of WEP Model to the Cheonggyecheon Watershed (청계천 유역에 대한 WEP 모형의 적용)

  • Noh, Seong-Jin;Kim, Hyeon-Jun;Jang, Cheol-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.645-653
    • /
    • 2005
  • Water cycle analysis in the Cheonggyecheon watershed(river length: 13.75 km, area: $50.96\;km^2$) was performed using WEP model, a physically based distributed rainfall-runoff model. As the application results of the model, the hydrological characteristics of the Cheonggyecheon watershed are significantly consistent with those of a typical urbanized watershed. The direct runoff from the watershed was larger and the evapotranspiration. was lower, and the response of runoff to rainfall was occurred very fast, as compared to forest watersheds. The river channel routing simulation results are similar to the change pattern and scale of the field data. The possible supply period of instream flow from Cheonggyecheoon watershed itself was estimated using WEP. According to the WEP simulation results for the annual water balance of the Cheonggyecheon watershed in 2002, the amount of direct runoff, infiltration and evapotranspiration were 830 mm, 388 mm and 397 mm respectively for an annual precipitation of 1,388 mm. The runoff to rivers was 1,288 mm. And the proportion of direct runoff, intermediate runoff and groundwater runoff were $67.6\%,\;12.7\%$ and $19.7\%$ respectively.