• Title/Summary/Keyword: Runoff Load

Search Result 289, Processing Time 0.024 seconds

Evaluations of NPS Reduction using the Rice Straw Mats and Soil Amendments from Steep Sloped Field (볏짚거적과 토양개량제를 활용한 경사지 밭의 비점오염원 저감평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Lee, Su-In;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • The objective of the research was to describe the effect of straw mat cover and soil amendments on the reduction of runoff and non-point source load from steep sloped highland agricultural fields. Four $5{\times}30$ m plots on sandy loam soil with 28 % slope were prepared. Experimental treatments were bare (control), rice straw mat cover (3,000 kg/ha) (S), PAM (5 kg/ha)+Gypsum (1 ton/ha) (PG) and rice straw mat cover+PAM+Gypsum (SPG). A variety of lettuce was cultivated and runoff was monitored during a growing season in 2011. Natural monitoring was conducted to three times. Runoff rate of S, PG and SPG plots were significantly lower than those of control plot. Especially, the runoff rate is zero in SPG plot at a first rainfall events. The reduction rate of runoff from the S, PG and SPG plots was 30.8 %, 29.0 % and 81.8 % compared to control plots, respectively. The reduction rate of NPS pollution load of S, PG and SPG was ranged of 50~90 %, 30~70 % and 90~100 %, respectively. Yield of lettuce from S, PG and SPG plots was respectively 400 (567 kg/ha), 320 (453 kg/ha) and 760 (1,067 kg/ha) that of compared to control plots greater than that from control plots (140 kg/ha). We speculated that the experimental treated plots could hold more nutrients and moisture than the control and helped the crop grow healthier. When analyzing the above results, in terms of reduction of runoff and NPS pollution load and crop yields, SPG experimental treatment had the best effect. It was concluded that the use of rice straw mats cover and soil amendments on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

Efficiency of the Non-structural BMPs with Reduced Rainfall Runoff (강우 유출수를 이용한 비구조적 BMPs의 저감효율 분석)

  • Jeon, Je Hong;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yu, Na Young;Ju, So Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.61-67
    • /
    • 2015
  • Effect of tillage on time of initial runoff, runoff coefficient, NPS pollution load, soil erosion and crop productivity were studied. Eight runoff plots of $5{\times}30m$ on loamy sand field that were 4 respective plots of 3 % and 8% slope were prepared. Treatment included conventional tillage (CT) and no-till (NT). Time of initial runoff from NT retarded between 247~261 % compared with that from CT. Under 3% slope, runoff coefficient in NT was 63.5 % lower than that in CT. The reduction under 8 % slope was 61.7 %. Differences in runoff reduction between 3% and 8% plots were not significant. NT could reduce more than 60 % of NPS pollution and between 50~85 % of sediment if compared with CT. Productivity of NT was also shown that it was not lower than that of CT. It was expected that the results could be used as a fundamental data for estimating a reduction load in Korea TMDL from a no-till BMP on loamy sand agricultural fields.

Relationship between Pollutant and Influence Factors in Highway runoff (강우시 고속도로 노면 유출 오염부하 발생 특성 분석)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun;Kang, Hye-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • This study analyzed influence factors and the correlation among pollutants which affect occurrence of leaked pollution based on the long-term runoff flow and water quality investigation results to understand the characteristics of highway rainfall runoff pollution load. According to the result of correlation analysis on TSS (Total Suspended Solid) concentration, anteceded dry days, rainfall intensity, traffic volume and etc. as major influence factors of highway rainfall runoff pollution loads, the correlations were weak or scarce in most items. These results might be attributed that runoff pollutant concentration changes vary severely on changes of rainfall intensity and rainfall duration within rainfall and it is affected by disturbances of vehicles and street cleaning and etc. as characteristics of the highway. While Cu, Fe and Zn which are discharged with high concentrations out of heavy metals showed high correlation with particulate matter, organic matter(COD), nutrient(TN, TP), Ni and Pb showed relatively low correlation in a correlation evaluation by pollutant. Significant correlation with traffic volumes was not shown and TSS concentration even decreased in accordance with increase of the traffic volume. In the comparison with precedent studies, it was considered necessary additional analysis of the effects of rainfall section analysis, road type, disturbances of surface contaminants by vehicles, rainfall and climate conditions, surrounding terrains etc.

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

Mass Balance of Pollutants at a Paddy Field Area During Irrigation Period (관개기 광역논에서의 오염물질의 수지(지역환경 \circled3))

  • 오승영;김진수;김규성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.617-622
    • /
    • 2000
  • Concentration of pollutants and discharge were monitored regularly at paddy field area during irrigation periods. The amounts of irrigation water during irrigation water during irrigation periods in 1999 were 3690mm. The concentration of pollutants in ponded water are high during fertilizer application period. The ratio of discharge of direct runoff Q$\_$D/ to the total runoff is 9%. The ratios of the load of direct runoff L$\_$D/ to the total load L$\_$T/ are 6% for T-N, 16% for T-P and 16% for COD. It was found that the ratios of the concentration are 0.7 for T-N, 1.8 for T-P and 1.9 for COD. The unit load of T-N, T-P and COD during irrigation periods were 12.1kg/㏊, 0.42kg/㏊ and 85.7kg/㏊, respectively

  • PDF

Characteristics of Storm Runoff Loadings from a Paddy Field Area (강우시 광역논으로부터의 유출부하 특성)

  • 오승영;김진수;오광영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.753-758
    • /
    • 1999
  • Concentration and discharge have been intensively monitored at the drainage canal in a paddy field area during storm-periods. Among 4 storm runoffs, the No. 2 and No. 3 runoff was in the fertilizer application period. The specific load-specific discharge equation L=aQ\ulcorner have different characteristics for the pollutants. The coefficient of b generally shows values of more than 1 for T-N, about 1 for COD\ulcorner, and less than 1 for T-P. For same specific discharge, No. 2 runoff shows higher specific load than other runoffs. For the coefficient of determination of the L-Q equation, COD\ulcorner is higher than T-N and T-P. The mean concentration of direct runoff, significantly depending on the storm events, is 0.6 to 8.3mg/ιfor T-N, 0.05 to 0.51 mg/ι for T-P, and 10.0 to 18.3 mg/ι for COD\ulcorner.

  • PDF

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

Characteristics of Non-Point Pollutant Runoff in Highland Field Fields through Long-term Monitoring (장기 모니터링을 통한 고랭지 밭 지역의 비점오염물질 유출특성)

  • Lee, Su In;Shin, Jae Young;Shin, Min Hwan;Ju, So-Hui;Seo, Ji Yeon;Park, Woon Ji;Lee, Jae Young;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.85-96
    • /
    • 2017
  • In this research, I performed rainfall monitoring by selecting the spot which can represent high altitude cool farm region in recent 3 years, and tried to understand the characteristic of outflow of non-point pollutants coming from high altitude cool farm region. As a result, it was shown that reducing rainfall runoff in highland farm area can reduce non-point pollution load and should consider priority to reduce runoff through management resources when selecting abatement method. Additionally, it is judged that reduction method related to base run-off should be selected by performing research on material motion of TN.