• Title/Summary/Keyword: Runoff Analysis

Search Result 1,385, Processing Time 0.027 seconds

Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model (기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가)

  • Choi, Yun Seok;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A grid based physically distributed model analyzes rainfall-runoff using physical parameters and grid-typed spatial and hydrological data. This study have developed a real time runoff modelling system using GRM RT(Grid based Rainfall-runoff Model Real Time) which is a real time flow analysis module in GRM, a grid based physically distributed rainfall-runoff model. Weather radar data received in real time are calibrated by using real time AWS from Korea Meteorological Administration(KMA), and they are applied to real time runoff modeling. And the runoff model is calibrated by using observed discharges from a water level gauge in real time. This study have designed and implemented the databases necessary to construct the real time runoff modelling system, and established the process of a real time runoff modelling. And the performances of the developed system have been evaluated. The system have been applied to Nerinheon watershed located in the upstream of Soyanggang Dam and the application results are evaluated.

An Experimental Runoff Formula in Building Roof Area for On-site Rainwater Management (On-site 방식 빗물관리를 위한 건축물 지붕면의 유출특성 경험식 수립)

  • Kim, Young-Jin;Han, Moo-Young;Kim, Yong-Ha;Mun, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • This study proposes an experimental formula for cumulative runoff analysis in building roof for on-site rainwater management. We can not find an appropriate method for roof runoff analysis because of its small area scale. A new runoff equation formula for rainfall depth(D) and cumulative runoff volume(V) is developed on roof runoff conditions. Reliability of the formula is verified with field experimental runoff monitoring for two years in two buildings of rainwater management system. This experimental runoff formula can root the cumulative runoff volume from roof area and rainfall depth, then develop reasonable inflow condition for rainwater retention tank design.

Pollutant Runoff Reduction Efficiency of Surface Cover, Vegetative Filter Strip and Vegetated Ridge for Korean Upland Fields: A Review

  • Park, Se-In;Park, Hyun-Jin;Yang, Hye In;Kim, Han-Yong;Yoon, Kwang-Sik;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.151-159
    • /
    • 2018
  • BACKGROUND: In this review paper, the effects of surface cover (SCV), vegetative filter strip (VFS), and vegetated ridge (VRD) on the pollutant runoff from steep-sloping uplands were analyzed to compare the pollutant reduction efficiency in runoff ($PRE_{runoff}$) of the practices and to investigate how slope and rainfall parameters affect the $PRE_{runoff}$. METHODS AND RESULTS: The $PRE_{runoff}$ of SCV, VFS, and VRD for pollutants including suspended solids and biological oxygen demand was compared by analysis of variance. The effect of slope and rainfall parameters on the $PRE_{runoff}$ was explored by either mean comparison or regression analysis. It was found that the $PRE_{runoff}$ differs with the practices due to different pollutant reduction mechanisms of the practices. Though the $PRE_{runoff}$ was likely to be affected by site condition such as slope and rainfall (amount and intensity), more comprehensive understanding was not possible due to the limited data set. CONCLUSION: The $PRE_{runoff}$ of SCV, VFS, and VRD differed due to the distinctive mechanisms of pollutant removal of the practices. It is necessary to accumulate experimental data across a variety of gradient of slope and rainfall for comprehensive understanding of the effects of the practices on pollutant runoff from steep-sloping uplands.

Flood Runoff Analysis Using an Object -Oriented Runoff Model (객체지향기법을 이용한 홍수유출해석)

  • 김상민;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.51-56
    • /
    • 1999
  • An object-orient watershed runoff model was formulated using the SCS curve number method and routing routines. The four objects included in the model were rainfall , hydrologic unit, reservoir, and channel. Each object considers the data and simulation method to depict the runoff processes. the details of which were presented and discusses in the paper. The resulting model was applied to the HS #3 watershed of the Balan Watershed Project, which is 412.5 ha in size and relatively steep in landscape. The simulated runoff hydrographs from the model were close to the observed data.

  • PDF

Uncertainty of future runoff projection according to SSP scenarios and hydrologic model parameters (미래 기후변화 시나리오와 수문모형 매개변수에 따른 미래 유량예측 불확실성)

  • Kim, Jin Hyuck;Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Future runoff analysis is influenced by climate change scenarios and hydrologic model parameters, with uncertainties. In this study, the uncertainty of future runoff analysis according to the shared socioeconomic pathway (SSP) scenario and hydrologic model parameters was analyzed. Among the SSP scenarios, the SSP2-4.5 and SSP5-8.5 scenarios were used, and the soil and water assessment tool (SWAT) model was used as the hydrologic model. For the parameters of the SWAT model, a total of 11 parameter were optimized to the observed runoff data using SWAT-CUP. Then, uncertainty analysis of future estimated runoff compared to the observed runoff was performed using jensen-shannon divergence (JS-D), which can calculate the difference in distribution. As a result, uncertainty of future runoff was analyzed to be larger in SSP5-8.5 than in SSP2-4.5, and larger in the far future (2061-2100) than in the near future (2021-2060). In this study, the uncertainty of future runoff using future climate data according to the parameters of the hydrologic model is as follows. Uncertainty was greatly analyzed when parameters used observed runoff data in years with low flow rates compared to average years. In addition, the uncertainty of future runoff estimation was analyzed to be greater for the parameters of the period in which the change in runoff compared to the average year was greater.

Relationship between Pollutant and Influence Factors in Highway runoff (강우시 고속도로 노면 유출 오염부하 발생 특성 분석)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun;Kang, Hye-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • This study analyzed influence factors and the correlation among pollutants which affect occurrence of leaked pollution based on the long-term runoff flow and water quality investigation results to understand the characteristics of highway rainfall runoff pollution load. According to the result of correlation analysis on TSS (Total Suspended Solid) concentration, anteceded dry days, rainfall intensity, traffic volume and etc. as major influence factors of highway rainfall runoff pollution loads, the correlations were weak or scarce in most items. These results might be attributed that runoff pollutant concentration changes vary severely on changes of rainfall intensity and rainfall duration within rainfall and it is affected by disturbances of vehicles and street cleaning and etc. as characteristics of the highway. While Cu, Fe and Zn which are discharged with high concentrations out of heavy metals showed high correlation with particulate matter, organic matter(COD), nutrient(TN, TP), Ni and Pb showed relatively low correlation in a correlation evaluation by pollutant. Significant correlation with traffic volumes was not shown and TSS concentration even decreased in accordance with increase of the traffic volume. In the comparison with precedent studies, it was considered necessary additional analysis of the effects of rainfall section analysis, road type, disturbances of surface contaminants by vehicles, rainfall and climate conditions, surrounding terrains etc.

Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM (SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축)

  • Lee, Yong-Chin;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.

Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model (격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석)

  • Park, In-Hyeok;Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis (End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교)

  • Kim, Su-Jin;Choi, Hyung Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.