• 제목/요약/키워드: Running shoes

검색결과 57건 처리시간 0.03초

도시철도 차량의 차륜답면-제륜자간 제동 마찰열에 관한 연구 (Study on the frictional heat between wheel tread and brake shoe of EMU)

  • 윤천주;김성걸;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 2005
  • Frictional heat generates when the brake shoes are in contact with wheel tread under high pressure for EMU's speed control, stopping, and deceleration. Such a frictional heat has a significant effect on the wheel tread. In order to analyze the characteristics of frictional heat and measure the amount of the generated heat, tests by using a brake dynamometer and for running vehicles are carried out. In addition, finite element analysis is performed to simulate the temperature distribution and thermal analysis of the brake shoes. Through the tests and the simulations, it is found that the problems by temperature increase at tread braking are verified.

  • PDF

트레드밀 달리기시 신발 내부의 부하에 관한 연구 (In-shoe Loads during Treadmill Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.

신발 굽 높이에 따른 Calf cramp muscle의 단축이 피로도에 미치는 영향 (The effects of calf cramp muscle shortening followed by shoe heel height on fatigue)

  • 허영구
    • 대한물리치료과학회지
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2013
  • The purpose of this research is to provide right information about deformation and to relieve fatigue of high-heels lovers. The research data includes 15 tests and survey on 71 female students. The result follows 1. Age of surveys is mostly 22, consisting 43.7% of all. The most frequently worn shoe kind is high heels that 45.1% of surveys wear 2. Female students those are 155~160cm high wear high heels most frequently, 40.8%. 3. The fatigue condition classified by hours of wearing: Surveys wearing high heels over 7 hours and 5~7 hours state starting to feel fatigue by 40.8%, 38.0% each, and the result was stastically significant 4. The appearance of pain on calf classified by hours of wearing: 35.2% of surveys answered they start to feel pain when worn high heels over 7 hours, and 33.8% of students answered 5~7 hours 5. The fatigue condition classified by kinds of shoes worn: 45.0% of the surveys felt tired when wearing high heels, 40.8% answered wearing heel inserted running shoes, and 14.0% for flat shoes. 6. The fatigue condition classified by heel height: 69.0% of survey answered they feel fatigue after wearing shoes with 5~9cm high heels, 21.1% answered under 3cm high heels, and 9.9% answered over 10cm heels(p<0.05) 7. The experience of cramp in calf cramp muscle classified by heel height: 69.0% of surveys experienced cramp when wearing 5~9cm high heels, 21.1% answered under 3cm high heels, 9.9% for over 10cm heels.

  • PDF

보행수 측정 및 보행패턴 분류 알고리즘 (A Study on a Algorithm of Gait Analysis and Step Count with Pressure Sensors)

  • 도주표;최대영;김동준;김경호
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1810-1814
    • /
    • 2017
  • This paper develops an approach to the algorithm of Gait pattern Analysis and step measurement with Multi-Pressure Sensors. The process of gait consists of 8 steps including stance and swing phase. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. As 3 parts of foot is supporting most of human weight, multiple pressure sensors are attached on the parts of foot: forefoot, big toe, heel. normal gait proceed from heel, forefoot and big toe over time. While normal gait proceeds, values of heel, forefoot and big toe can be changed over time. So Each values of pressure sensors over time could discriminate whether it is normal or abnormal gait. Measuring Device consists of non-inverting amplifiers and low pass filter. Through timetable of values, normal gait pattern can be analyzed, because of supported weight of foot. Also, the peak value of pressure can judge whether it is walking or running. While people are running, insole of shoes is floating in the air on moment. Using this algorithm, gait analysis and step count can be measured.

보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향 (Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running)

  • 김택훈
    • 한국전문물리치료학회지
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF

축구화 스터드의 형태변화에 따른 회전마찰력 (Rotational Friction of Different Soccer Stud)

  • 이중숙;박상균
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.121-138
    • /
    • 2004
  • The design of soccer studs is important for providing friction on a variety of surfaces. We hypothesized that a certain type of soccer studs could improve performance due to high rotational friction. Thus, this study was conducted to determine the relationship between the frictional characteristics and different soccer stud design. Twelve recreational soccer players were recruited. Rotational friction data from the force plate was collected for all subjects during normal walking with 180 degree rotation. Walking speed was controlled at 1.2m/s (${\pm}\;0.1\;m/s$) with timing lights on infilled artificial turf. Three different types of soccer studs and one running shoe were tested. Repeated measures ANOVA was used to determine significance. Significant differences were found in rotational friction with four different shoes. Trx and World studs tended to have greater maximum rotational friction than the running shoe (Nova) and traditional soccer shoe(Copa Mondial). The results were as follow : world(25.95Nm) > trx(25.74Nm) > copa(22.50Nm) > nova(16.36Nm). The difference may be due to the number, location, size, and shape of studs. We concluded that stud design influences rotational friction between the shoe and surface during movement. Based on studs design and contact area, Trx with blade type studs are recommended since it showed high rotational friction for performance as well as enough contact area for stability. However, differences due to the mechanical properties of soccer studs are still being investigated.

Shoes from Pinet to the Present

  • June, Swann
    • 한국복식학회:학술대회논문집
    • /
    • 한국복식학회 2001년도 19th International Costume Association Congress
    • /
    • pp.11-13
    • /
    • 2001
  • For those unfamiliar with the shoe world, Pinet (1817-1897) was a contemporary of Worth, the great Parisian couturier. So I look at the glamour shoes and the world of haute couture, and indeed the development of the named designer. That is a concept we are all familiar with now. So it is not easy to comprehend the lack of names for the exquisite work before 1850. Straightway I have to say that the number of noted shoe designers is far fewer than famous dress designers, but I will introduce you to some of them, against the background of contemporary shoe fashions. Franc;ois Pinet was born in the provinces (probably Touraine) in 1817, two years after the end of the Napoleonic Wars. His father, an ex-soldier, settled to shoemaking, a comparatively clean and quiet trade. It had a tradition of literacy, interest in politics, and was known as the gentle craft, which attracted intelligent people. We should presume father would be helped by the family. It was usual for a child to begin by the age of 5-6, tying knots, sweeping up, running errands and gradually learning the job. His mother died 1827, and father 1830 when he was 13, and at the time when exports of French shoes were flooding world markets. He went to live with a master shoemaker, was not well treated, and three years later set out on the tour-de- France. He worked with masters in Tours and Nantes, where he was received as Compagnon Cordonnier Bottier du Devoir as Tourangeau-Ia rose dAmour (a name to prove most appropriate). He went on to Bordeaux, where at 19 he became president of the local branch. In 1841 he went to Paris, and in 1848, revolution year, as delegate for his corporation, he managed to persuade them not to go on strike. By now the shoemakers either ran or worked for huge warehouses, and boots had replaced shoes as the main fashion. In 1855 Pinet at the age of 38 set up his own factory, as the first machines (for sewing just the uppers) were appearing. In 1863 he moved to new ateliers and shop at Rue ParadisPoissoniere 44, employing 120 people on the premises and 700 outworkers. The English Womans Domestic Magazine in 1867 records changes in the boots: the soles are now wider, so that it is no longer necessary to walk on the uppers. There is interest in eastern Europe, the Polonaise boots with rosette of cord and tassels and Bottines Hongroises withtwo rows of buttons, much ornamented. It comments on short dresses, and recommends that the chaussure should correspond to the rest of the toilet. This could already be seen in Pinets boots: tassels and superb flower embroidery on the higher bootleg, which he showed in the Paris Exposition that year. I think his more slender and elegant Pinet heel was also patented then or 1868. I found little evidence for colour-matching: an English fashion plate of 1860 shows emerald green boots with a violetcoloured dress.

  • PDF

철도 전기 시스템 (Rail Road Electric Traction System)

  • 데버랜전고팔;노영환;김윤호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.646-658
    • /
    • 2006
  • In this paper, the details of electric traction voltages which are widely used for metro and mainline trains are presented. The problems encountered in catenaries, pressure of the pantograph pan, catenary contact cross sectional area, materials etc are well covered. Catenary height from the rail for main line, bridges, sheds etc is discussed. The catenary running details and switching of one catenary to another are explained. The dead zones in 3 phase grid as well as in DC are presented here. The pantograph structure, blades, shoes etc. for AC/DC EMUs are dealt. The schematic diagram for electrification systems used for railways are given and explained with typical electrical parameters of Indian Railways.

  • PDF

유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가 (The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity)

  • 곽창수;김희석
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석 (A analysis of friction relation between tennis outsole and tennis playing surfaces)

  • 김정태
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.361-380
    • /
    • 2002
  • 마찰력(friction)은 급정지나 급출발, 또는 두 동작이 동시에 이루어질 때, 미끄럼방지는 효과적으로 이루어져야 하며, 특히 테니스, 농구, 배구 등 코트 스포츠에 있어서 최적의 마찰력은 필수적이다. 이러한 마찰력은 무게가 많이 나갈수록, 다른 물체와의 접촉면이 넓을수록, 장력이 클수록 커진다. 또한 표면이 매끄러울 때보다는 거칠수록 커지는 특성을 가지며, 본 연구의 목적은 테니스화겉창과 테니스코트에 설치되어 있는 스토츠바닥재사이에 마찰력을 대해서 고찰해 보고자 하였으며, 마찰력운동 및 이의 관련 선행 국외 연구활동이 어떻게 이루어졌는지를 종단적 국외문헌조사를 통해 어떤 상관관계가 있는지를 구명해 보고자 하였다. 국내 테니스화의 연구와 테니스스포츠바닥재간의 국외 연구활동의 종단적 연구지표로서 스포츠와 스포츠바닥재간의 마찰력 관련주요연구연표를 작성해 봄으로서 연구활동의 경과추이를 조사하였다. 테니스 바닥재 현황으로는 테니스코트의 표층재는 일반적으로 천연재료를 사용한 클레이계코트와 합성재료를 사용한 전 천후계 하드코트로 구별된다. 본 연구를 통하여 테니스화 겉창과 테니스 스포츠바닥재간의 마찰력의 국외선행연구현황 이해를 돕고, 향후 국내에서 스포츠화 겉창과 마찰력, 스포츠바닥재와 마찰력의 평가에 대한 연구시 국외에서 기 실시된 연구를 중복연구하는 시행착오 방지 및 국외 선행연구에 대한 기초자료 및 연구현황을 자세히 파악할 수 있을 것으로 사료된다.