• 제목/요약/키워드: Running Speed

검색결과 1,198건 처리시간 0.028초

고속전철 가선계 가동 브래킷의 동적하중 계산 (Dynamic Load calculation at the Bracket of High Speed Train Catenary System)

  • 최연선;이승일
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.588-593
    • /
    • 2006
  • The catenary system of a high speed train is designed to have a flexibility to ensure the contact with a pantograph during high speed running. The flexibility inevitably entails a vibration. The vibration is transferred to a utility pole through brackets. Therefore, the examination of the dynamic load at the bracket due to the train running is necessary for the design of the bracket. In this research, an equation of motion is derived to calculate the dynamic load at the bracket during high speed running and a computer program is developed. Also, the analyzed results are compared to characterize the dynamic load at the bracket.

에너지 효율적인 속도 프로파일 생성을 위한 Simulink 기반 열차 성능 시뮬레이션 (A Train Performance Simulation using Simulink for Generating Energy-efficient Speed Profiles)

  • 강문호;한문섭
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1816-1822
    • /
    • 2010
  • In this research TPS (Train Performance Simulation) blocks are designed using Simulink and applied to generate speed profiles for energy-efficient train operation. With a train operation mode of maximum powering, coasting, and maximum breaking, a breaking point is calculated from forward-backward running profiles. Then, GA (Genetic Algorithm) is used to solve a running time constraint, and a coasting point is produced from the searching process of GA. With the breaking point and the coasting point a speed profile is plotted. Train performance under a speed limit and gradient variations is simulated and resultant speed profiles are analyzed.

한국형 고속전철용 감속구동장치 시운전 시험 및 평가 (Measuring and evaluation of reduction gear unit for running test of Korea High Speed Train)

  • 이동형;서정원;문경호;최경진;최강윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.554-560
    • /
    • 2003
  • The transmission systems of high speed train serve in the severe condition compared with those of other trains, namely, they have to transmit high power to run with high speed and they have to make maximum use of the limited space. To clarify the capability of reduction gear unit for Korea High Speed Train, torque and temperature, vibration on the reduction gear unit were measured and test data were analyzed. This paper reports test methods and test results that performed to verify reliability of reduction gear unit during running test of Korea High Speed Train. It is confirmed from these results that the performance of reduction gear unit has not any problem.

  • PDF

UIC 518의 진동 가속도 계측을 통한 한국형 고속전철의 350km/h 주행 동적 거동 평가 (Estimation of the Dynamic Behavior for Korean High Speed Train at 350km/h using the Accelerations according to the UIC Code 518OR)

  • 김기환;김영국;김석원;목진용;박찬경
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.544-549
    • /
    • 2006
  • The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. The test of process and the analysis method about it are well explained on UIC Code 518 OR which is the spacial international standard about running safety and dynamic behavior on the line test for railway vehicle. Korean High Speed Train designed to operate at speed 350km/h has been tested on high speed line since it was developed in 2002 and it recorded the highest speed 352.4km/h at the 16th Dec. 2004 in Korea. This paper includes the analysis of running behavior of this train at speed 350km/h and the analysis of dynamic safety is presented in it, extending to the range of high speed while the UIC 518 limit the speed below 200km/h.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

곡선부 저속주행시 타오르기 탈선의 원인과 대책 (Cause and Counterplan of Wheel Climb Derailment at Low Speed on Curves)

  • 함영삼;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1031-1035
    • /
    • 2007
  • When vehicles running, vertical force and lateral force act except load of vehicles to rail and wheel. This force happens by complex motion at running. If mark vertical force by P and lateral force by Q, derailment coefficient displays Q/P, most important indicator pointer of running safety judgment. If Q is grown than P from derailment coefficient, than arrived to derailment because wheel climb or jumps over rail. Wheel climb derailment among kind of derailment is when attack angle is +, wheel and rail strike and flange rides to rail. This derailment occurs much in curved line and occurs in low speed. In this study, occurred when running at low speed on curved line, analyze cause of derailment and presented the countermeasure plan.

  • PDF

곡선부 통과 열차의 주행안전성 평가에 관한 연구 (A Study on the Assessment of Running Safety of Railway Vehicle passing through Curve)

  • 엄범규;김종오;양경탁;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.849-854
    • /
    • 2008
  • For the running safety assessment of Saemaul train passing through curves, an analysis model for multibody system has been developed. By using this model and ADAMS/Rail, sensitivity analyses depending on the variation of parameters related to the derailment coefficients have been conducted. According to the increase of running speed, the derailment coefficient and unload ratio were increased. At high speed, the derailment coefficient and unload ratio of left wheel showed higher than right wheel. If the cant increased, the derailment coefficient and unload ratio increased. but decreased based on the balance cant value by the curvature and running speed.

  • PDF

주행 시험대에서의 고속전철 개발대차의 주행안정성 평가 (Running Stability Test of Developed Bogie for High Speed Train on the Roller Rig)

  • 김진태;오형식;정훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.839-844
    • /
    • 2002
  • This research aims to test the running stability of the developed bogie with maximum operating speed of 350km/h, which of Korea TGV was 300km/h. The running stability test has been executed in status of a dummy car with one developed bogie and one dummy bogie on the roller rig to embody similar operation condition. The test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed has been increased by the roller step by step. In consequence, the developed bogie was proven to be able to run upto 400 Km/h without any unstable point in the non-excitation. Vibration characteristics of carbody also was within the value specified on the UIC 515.

  • PDF

협궤용 준고속 전동차 개발 대차의 주행 성능 시험 (Roller Rig Test of Semi-High Speed EMU Bogie Developed for Narrow Gauge)

  • 양헌석;이원상;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1282-1288
    • /
    • 2006
  • Upon demands for the requests of rapid, safe and comfort transit, the proven high speed bogie having not only high-quality but also good running performance is required by customer all over the railway vehicle for narrow gauge. Hereupon, the running test on roller testing rig for developed semi-high speed bogie for narrow gauge was carried out in order to verify the running performance and safety. The aim of the test is to assess the dynamic behaviour of the bogie on straight track including the running stability, ride quality, modal frequency and dynamic response.

  • PDF

TPS를 이용한 경량전철의 주행 성능 향상 방안 시뮬레이션 (Train Performance Improvement Simulation of Light Rail Transit by TPS)

  • 이동형;구동회;이경철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.288-293
    • /
    • 2006
  • In this work, the characteristics and the improving method of train performance of Korean rubber-tired AGT system(K-AGT) and Urban MAGLEV system are evaluated by using Train Performance Simulation(TPS). The train performance characteristics of K-AGT were analysed according to the change of maximum running speed and those of Urban MAGLEV were evaluated according to a vehicle weight variation. In the result of simulation in virtual line, the scheduled speed and the running time of K-AGT system have no difference with Urban MAGLEV system if the maximum running speed is equal. But the energy consumption of Urban MAGLEV system is more than that of K-AGT system. The analyses showed that in case of a 20 percent vehicle weight reduction of Urban MAGLEV system, the energy consumption per person is similar with the K-AGT system. The Urban MAGLEV system is more efficient in long travel distance condition than in short running distance condition in the aspect of train performance.

  • PDF