• Title/Summary/Keyword: Running Head

Search Result 91, Processing Time 0.023 seconds

Impact Shock Components and Attenuation in Flat Foot Running (편평족 달리기 시 충격 쇼크의 성분과 흡수)

  • Ryu, Ji-Seon;Lim, Ga-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

Flying Characteristics of Running Tape above Rotating Head (I) (회전헤드에 대한 주행테이프의 부상특성 ( I ))

  • 민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.523-536
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the numerical simulation and the experiment. The scope of analysis is confined to the phenomena of two dimensional elasto hydrodynamic lubrication between the protruded bump on a rotating cylinder and the running tape. This model is based on the elastic deformation equation of plate and shell and Reynolds equation. Finite difference method is employed as a numerical technique to calculate (1) the distribution of pressure between the running tape and rotating bump and (2) the vertical deformation of elastic thin tape over he rotating bump under hydrodynamic pressure. In numerical analyses, the effects of bump size on flying characteristics of the tape were evaluated and examined considering the influence of tension and stiffness of tape.

Flying Characteristics of Running Tape above Rotating Head (II) -Experimental Analysis- (회전헤드에 대한 주행테이프의 부상특성 (II) -실험해석-)

  • 민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the experiment. The scope of study is confined to measure the vertical deformation of running tape under hydrodynamic pressure invoking phenomena of elasto-hydrodynamic lubrication between the protruded bump on a rotating cylinder ad the running tape. Experimental system is devised to measure the vertical deflection of the running tape by opto-electronical displacement gauge, which enables to detect microscopic surface deflection of high frequency. Thorough the tests of small specimens of groove and bump, the accuracy and reliability of this experimental method is confirmed and achieved an accuracy within 5%(2.mu.m) error for the microscopic deflection with high frequency. In experimental works, the effects of bump size on flying characteristics of the tape were evaluated and examined. For the vertical deformation of the running tape. the numerical results and its trend agree qualitatively with the experimental ones.

The Kinematic Analysis of the Lower Limbs Joint and the Study of Muscle Activity for the Lower Limbs Muscle During the Level and Downhill Running (평지와 내리막 달리기 시 하지 관절의 운동학적 분석과 하지 근육의 근 활성도에 관한 연구)

  • Moon, Gon-Sung;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.9-19
    • /
    • 2006
  • The purpose of this study was to analyze the kinematic variables of the lower limbs joints and the muscle activity for lower limbs during the level and downhill running. The subjects were 6 males of twenties and required to run on the level and downhill which was -7% grade treadmill at 8.3km/h. The running performances were filmed by high speed video camera and EMG signal was gained by ME3000P8 Measurement Unit. Rectus femoris(RF), Vastus lateralis(VL), Gluteus medius(GLU), Biceps femoris(BF), gastrocnemius medial head(GM), gastrocnemius lateral head(GL), Soleus(SO), Tibialis anterior(TA) were selected. The result of this study were as follows: 1. Ankle, knee, hip joint in downhill running showed less movement than the level running but, no significant difference. 2. VL and BF during the support phase in downhill running showed Iess muscle activity than the level running. but RF showed the opposite result. 3. GM, GL, SO adn TA during the supports phase in downhill running showed less muscle activity than the level running.

The Analysis of the Muscle Fatigue for the Lower Limbs Muscle during the Level and Downhill Running (평지와 내리막 달리기 시 하지 근육의 근 피로에 관한 연구)

  • Moon, Gon-Sung;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • The purpose of this study was to analyze the muscle fatigue for lower limbs during the level and downhill running. The subjects were 6 males of twenties who have no experience to get the injury in the lower limbs and required to run on the level and downhill which was -7% grade treadmill at 8.3km/h. EMG signal was gained by ME3000P8 Measurement Unit and computed the Median Frequency(MF) with the power spectrum analysis in the Megawin software. Rectus femoris(RF), Vastus lateralis(VL), Gluteus medius(GLU), Biceps Femoris(BF), gastrocnemius medial head(GM), gastrocnemius lateral head(GL), Tibialis anterior(TA) were selected. The result of this study were as follows: The MF of RF decreased in the downhill running than level running in length of time but, the MF of VL was opposite. The MF of BF decreased in the level and downhill running, but, the MF of BF decreased much in the level than downhill running. The MF of GLU decreased much in the downhill running but, almost no change in the level running. The MF of TA decreased in the level running than downhill running. The MF of GL decreased in the level running but, the MF of GM decreased in the downhill running in length of time. This study analyzed the muscle fatigue of the lower limbs with the median frequency on the basis of an assumption that the impact force for the flexion and extension of the joint and the body mass may be much in the eccentric contraction such as the downhill running than level running. RF and GM showed the muscle fatigue in the downhill running than level running. BF and GL showed the muscle fatigue in the level running than downhill running.

Vibration Analysis on Rolling Stock running in Rail Head Surface Irregularity (레일두부 표면요철에 의한 열차주행 시 진동발생에 대한 분석)

  • Lee, Sang-Bae;Lee, Sung-Uk;Woo, Byong-Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.988-991
    • /
    • 2006
  • Rolling Stock running are making Rail Head Surface damage(corrugation, flaking, shelling, etc). It's coming out Rail Head Surface Irregularity. It increases Rolling Stock and structure vibration. Therefore, this paper analyzes the influence of Rail Head Surface Irregularity to railway vibration. And, It introduces the management method of Rail Head Surface and proposes its R&D direction in railway-run organization.

  • PDF

An Experimental Study on the Motion Response of a High-Speed Planing Craft in Regular Head Waves (정면 규칙파 중 활주형 고속선의 운동 응답에 대한 실험적 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Hwang, Seung-Hyun;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.373-381
    • /
    • 2009
  • The running attitude of a high-speed planing craft may change significantly depending on its speed in seaway. Other variables that may influence its running attitude are its weight, center of gravity, sea conditions, and so on. In this paper, planing craft model tests were carried out with respect to above variables in SNU towing tank, and vertical motion responses of a planing craft in regular head waves were analyzed. The experimental results in regular waves were compared with those in calm water, and compared with the theoretical estimations. Finally, the effects of running speeds of a planing craft on its motion amplitudes are confirmed.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

A Study on Space-Technology Startup-Business Support Programs: Current Status and Future Direction (우주기술 기반 벤처창업 지원 프로그램 추진현황 및 발전방향 연구)

  • Kim, Iltae;Chun, Yongsik;Jeon, Byunggyu;Joung, Hoiman
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • This paper explains space-technology startup-business support programs. MSIP (Ministry of Science, ICT and Future Planning) and KARI (Korea Aerospace Research Institute) began running startup-business support programs from 2013 according to a "space-technology industrialization plan." In addition, MSIP and KARI have been running startup academies and STAR-Exploration for future entrepreneurs and startup companies since 2015. From these programs, five startup companies were established and they are generating sales. This paper shows the results of the programs, and the program cases of the startup and venture companies are analyzed for both domestic and international audiences. The future direction of startup-business support programs that are based on space technology is also discussed.

Correlations between Craniovertebral Angle(CVA) and Cardiorespiratory Function in Young Adults (젊은 성인에서 두개척추각과 호흡순환기능의 상관관계 분석)

  • Lee, Myoung-Hee;Chu, Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.107-113
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the correlation between craniovertebral angle (CVA) and cardiorespiratory function ($VO_2max$ and $VCO_2max$) in young adults. METHODS: For this study, the students of D college were questioned and 50 members of D college were participated in our research.. Side-view pictures of each subject were taken in standing positions, in order to assess forward head posture (FHP) by measuring the craniovertebral angle. The craniovertebral angle was measured as the angle between a horizontal line at C7 and a line from the tragus of the ear to the spinous process of C7. And $VO_2max$ and $VCO_2max$ were measured by Quark CPET (cosmed co, USA) while the subjects were performed the treadmill running task of a intensity to set with respiratory mask. Subjucts were Then Pearson's correlation coefficient was calculated to estimate the relationship between craniovertebral and cardiorespiratory function ($VO_2max$ and $VCO_2max$) using SPSS for window. RESULTS: There was a significant positive correlation between craniovertebral angle and $VO_2max$ during treadmill running task (r=0.528, p<0.05). And there was a significant positive correlation between craniovertebral angle and $VO_2max$ during treadmill running task (r=0.566, p<0.05). CONCLUSION: Foreward head posture is related to cardiorespiratory function, and it has a negative correlation with cardiorespiratory function.