• Title/Summary/Keyword: Runge-Kutta Method

Search Result 506, Processing Time 0.03 seconds

Measurement of Joint Resistance of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag Superconducting Tape by Field decay Technique (자장감쇠법을 이용한 $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag 초전도선재의 접합저항 측정)

  • Kim, Jung-Ho;Lee, Seung-Muk;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • We fabricated a closed coils by using resistive-joint method and the joint resistance of the coils were estimated by field decay technique in liquid nitrogen. We used the Runge-kutta method for the numerical analysis to calculate the decay properties. The closed coil was wound by $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag tape. Both ends the tape were overlapped and soldered to each other. The current was induced in a closed coils by external magnetic flux density. Its decay characteristic was observed by means of measuring the magnetic flux density generated by induced current at the center of the closed coil with hall sensor. The joint resistance was calculated as the ratio of the inductance of the loop to the time constants. The joint resistances were evaluated as a function of critical current of loop, contact length, sweep time, and external magnetic flux density in a contact length of 7 cm. It was observed that joint resistance was dependent on contact length of a closed coil, but independent of critical current, sweep time, and external magnetic flux density. The joint resistance was measured to be higher for a standard four-probe method, compared with that for the field decay technique. This implies that noise of measurement in a standard four-probe method is larger than that of field decay technique. It was estimated that joint resistance was $8.0{\times}10^{-9}{\Omega}$ to $11.4{\times}10^{-9}{\Omega}$ for coils of contact length for 7 cm. It was found that 40Pb/60Sn solder are unsuitable for persistent mode.

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

Immersed Boundary Method for numerical Analysis of Bridge Section (가상경계법을 이용한 교량 내풍단면 유동장 수치해석)

  • Kim, Hak Sun;Lee, Sungsu;Nho, Jae Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.69-69
    • /
    • 2011
  • 본 논문에서는 비정상 상태의 비압축성 유동장을 해석하기 위하여 물체맞춤격자방법이 아닌 가상경계법을 사용하였다. 가상경계법은 구조격자를 사용하여 구조물 경계면에서 Momentum Forceing을 사용하여 가상의 경계를 만들어 유동장을 해석하는 방법이다. Navier-Stoke 방정식의 수치 이산화 방법으로 Kim et al(1985)이 사용한 Fractional Step Method(FSM)을 사용하였다. 시간에 대하여 semi-implicit FSM를 사용하였고, 확산항에 대해서는 2차 정확도의 Crank-Nicolson Method를 대류항은 3차 정확도의 Runge-Kutta Method를 사용 하였다. 본 연구에서는 가상경계법을 이용한 유동장 해석이 교량 단면에 대하여 수치해석이 가능한지 검토하였다. 가상경계법은 현재 많은 연구가 유선형의 구조물에 대하여 수행되어 오고 있다. 교량 단면과 같은 각 진 구조물에 대한 검토는 아직 미비한 실정이다. 가상경계법에서 다루고 있는 구조물 경계면에서의 Momentum Forcing 방법이 유선형의 구조물에 맞추어 연구가 진행되었기 때문이다. 먼저 본 연구의 프로그램을 검증하기 위하여 원형 실린더에 대하여 가상경계법을 적용한 결과 Re 수 200에서 Strouhal Number, 양력계수, 항력계수를 이전 연구 결과와 비교하였다. Williamson(1988)과 Zhang(1995)의 연구결과와 유사한 결과를 얻을 수 있다. 그리고 교량의 단면과 같은 각진 구조물(Bluff Body)에 대하여 가상경계법 적용하였다. 본 논문의 연구에서 평가 대상으로 하고 있는 2차원 교량 단면에 대하여 유동장 해석을 하였다. 본 논문에서 정량적인 유체력과 유동장에 대한 비교 및 검토가 이루어지지 못했지만 압력장과 유선의 형태가 이론적인 값을 벗어나지 않고 있는 것으로 확인 되었다. Re 수 2700에서 전산 해석을 수행하였으며, 교량 단면 주위의 압력계수와 박리현상 그리고 후류에서의 Vortex shedding 현상이 모두 적절한 분포가 나타나는 것을 확인할 수 있었다. 따라서 가상경계법을 이용하여 각진 구조물에 대한 주위 유동장해석에 대한 가능성을 확인하였으며, 풍동실험과의 결과비교를 통하여 가상경계법을 이용하여 교량 단면 주위의 유동장 해석 결과를 정량적으로 비교할 것이다.

  • PDF

Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

  • Crivellini, Andrea;Nigro, Alessandra;Colombo, Alessandro;Ghidoni, Antonio;Noventa, Gianmaria;Cimarelli, Andrea;Corsini, Roberto
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).

A Study of Design of Hollow Fiber Membrane Modules for using in Artificial Lung by the PZT Actuator

  • Kim, Gi-Beum;Kim, Seong-Jong;Hong, Chul-Un;Lee, Yong-Chul;Kim, Min-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.143-153
    • /
    • 2006
  • The purpose of this work was to assess and quantify the beneficial effects of gas exchange, while testingto the various frequencies of the sinusoidal wave that was excited by the PZT actuator, for patients suffering from acute respiratory distress syndrome (ARDS) or chronic respiratory problems. Also, this paper considered a simulator to design a hollow type artificial lung, and a mathematical model was used to predict a behavior of blood. This simulation was carried out according to the Montecarno's simulation method, anda fourth order Runge-Kutta method was used to solve the equation. The experimental design and procedure are then applied to the construction of a new device to assess the effectiveness of the membrane vibrations. As a result, the vibration method is very effective in the increase of gas transport. The gas exchange efficiency for the vibrating intravascular lung assist device can be increased by emphasizing the following design features: consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of water around the hollow fiber membranes. The experimental results showed the effective performance of the vibrating intravascular lung assist device. Also, we concluded that important design parameters were blood flow rates, fiber outer diameter and oxygen pressure drop. Based on the present results, it was believed that the optimal level of blood flow rates was 200$cm^3$/min.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Analysis of vibration characterization of a multi-stage planetary gear transmission system containing faults

  • Hao Dong;Yue Bi;Bing-Xing Ren;Zhen-Bin Liu;Yue, Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.389-403
    • /
    • 2023
  • In order to explore the influence of tooth root cracks on the dynamic characteristics of multi-stage planetary gear transmission systems, a concentrated parameter method was used to construct a nonlinear dynamic model of the system with 30-DOF in bending and torsion, taking into account factors such as crack depth, length, angle, error, time-varying meshing stiffness (TVMS), and damping. In the model, the energy method was used to establish a TVMS model with cracks, and the influence of cracks on the TVMS of the system was studied. By using the Runge- Kutta method to calculate the differential equations of system dynamics, a series of system vibration diagrams containing cracks were obtained, and the influence of different crack parameters on the vibration of the system was analyzed. And vibration testing experiments were conducted on the system with planetary gear cracks. The results show that when the gear contains cracks, the TVMS of the system will decrease, and as the cracks intensify, the TVMS will decrease. When cracks appear on the II-stage planetary gear, the system will experience impact effects with intervals of rotation cycles of the II-stage planetary gear. There will be obvious sidebands near the meshing frequency doubling, and the vibration trajectory of the gear will also become disordered. These situations will become more and more obvious as the degree of cracks intensifies. Through experiments, the theoretical results are in good agreement with experimental results, verifying the correctness of the theoretical model. This provides a theoretical basis for fault diagnosis and reliability research of the system.

A Study on Mathematical Model of Caprine Arthritis Encephalitis (CAE) and Development of Animal Quarantine Information System Adapted for Small Island

  • Hirata, Teppei;Yonahara, Yoshihito;Asharif, Faramarz;Omatsu, Tsutomu;Miyagi, Takeshi;Nagata, Yasunori;Mizutani, Tetsuya;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.302-309
    • /
    • 2013
  • This paper proposes a mathematical model of Caprine arthritis encephalitis (CAE), which is a disease causing significant economic damage to the goat farming industry, and reports the application of this model to the development of an information management system of animal quarantine to overcome this disease. The mathematical model of CAE was derived from the AIDs model in human case because epidemical characteristics of these diseases including infection pass are similar. This model can be expressed by simultaneous differential equations. Simulations using a new model were performed according Euler's and Runge-Kutta method using numerical analysis software. In each method, strong convergence was observed and the results were similar. The design of an information management system of animal quarantine was proposed as an application of the new model. System design was constructed on the assumption that in subtropical islands, the expected development of information infrastructure and utilization will become valuable in the future.

  • PDF

Development of 2D Patterns for Cycling Pants using 3D Data of Human Movement and Stretch Fabric (동작시 3D 정보를 이용한 2D 패턴 전개 및 신축성 원단의 신장률을 고려한 사이클 팬츠 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Korean Journal of Human Ecology
    • /
    • v.19 no.3
    • /
    • pp.555-563
    • /
    • 2010
  • With recent advances in 3D scanning technology, three-dimensional (3D) patternmaking is becoming a powerful way to develop garments pattern. This technology is now applicable to the made to measure (MTM) system of both ordinary and tightly fitting garments. Although the pattern of fitted clothing has been developed using 3D human data, it is still interesting to develop cycling pants by considering while-cycling body posture and fabric elasticity. This study adopted the Garland's triangle simplification method in order to simplify data without distorting the original 3D scan. Next, the Runge-Kutta method (2C-AN program) was used to develop a 2D pattern from the triangular pixels in the 3D scanned data. The 3D scanned data of four male, university students aged from 21 to 25, was obtained using Whole body scanner (Model WB4, Cyberware, Inc., USA). Results showed the average error of measurement was $4.58cm^2$ (0.19%) for area and 0~0.61cm for the length between the 3D body scanned data and the 2D developed pattern data. This is an acceptable range of error for garment manufacture. Additionally, the 2D pattern developed, based on the 3D body scanned data, did not need ease for comfort or ease of movement when cycling. This study thus provides insights into how garment patterns may be developed for ergonomic comfort in certain special environments.

Effect of seeding ratio on acidogenic biokinetics in high ammonia concentration

  • Yang, Keun-Young;Shin, Seung-Gu;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-66
    • /
    • 2005
  • Anaerobic digestion is one of the well-known methods for biological treatment handling of concentrated organic matter such as swine $wastewater.^{1)} The anaerobic digestion can reduce organic loading but also hydrolyze non-biodegradable organic $matter.^{2)}$ The feces from the scrapper-type barn are usually collected to make compost and the urine is discarded with swine-slurry wastewater by ocean-dumping or treated by biological methods. The lagoon, aerobic digestion, anaerobic digestion, SBR, $A^{2}/O$, and UCT have been applied for treating swine $wastewater.^{3)} In this study, as a result of the analysis of swine wastewater, the total and soluble chemical oxygen demand was 130g/L and 60g/L, respectively. And the volatile fatty acid as chemical oxygen demand equivalent was 45g/L, which was 75% of soluble chemical oxygen demand. Before everything else, ammonia nitrogen concentration was 6.5 g/L. From biochemical acidogenic potential test, it was concluded that the enhanced acidification process to manage swine waste should be operated in the ammonia nitrogen concentration of less than 1.2 g/L. In the result of seeding ratio experiments with artificial $wastewater^{4)}, the lag period of acidogens was taken the long time because of the inhibition by the $ammonia^{5)}$, however no difference of period by the seeding ratio was not shown. The Haldane-based biokinetics were also evaluated using a method of fourth order Runge-Kutta $approximation.^{6,7)}$ The nonlinear least squares (NLLS) method with a 95% confidence interval was also used. The ranges of maximum microbial growth rate, ${/mu_{max}}$, and half saturation coefficient, $K_{s}$, for acidogenesis of various seeding ratio with artificial wastewater were 6.1 ~ 12.6 $d^{-1}$ and 45,000 ~ 53,500 mg glucose/L, respectively. Also, the methanogenic microbial yield coefficient, Y, and microbial decay rate coefficient, $k_{d}$, and inhibition substrate concentration, $K_{si}$, for the reactors were determined to be 0.32 ~ 0.465 ${/mu}g$/mg glucose; 0.42 ~ 1.01 $d^{-1}$ and 51,500 ~ 55,600 mg glucose/L, respectively.

  • PDF