• Title/Summary/Keyword: Runge-Kutta Integration Method

Search Result 93, Processing Time 0.024 seconds

Analysis of Solar Tracking System Via Single Term Walsh Series Approach (월쉬 단일항 전개에 의한 태양추적장치의 해석)

  • Yoo, Sang-Jin;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.682-686
    • /
    • 1991
  • The purpose of a solar tracking system (STS) is to control the attitude of a space vehicle so that it will track the sun with high accuracy. In this paper, the literature of tracking of the sun in a plane is surveyed and a control modeling for the analysis of STS is presented by simultaneous transfer functions and state-space equations. Also a program for obtaining state variables by the single term Walsh series(STWS) approach is developed. The proposed approach is much simpler in analysis and easier in implementation than the Runge-Kutta numerical integration Method. The results of computer simulation are shown for the dynamic behaviors of vehicle axis, armature-controlled dc motor and controller of STS via a Runge-Kutta method and a single term Walsh series approach, respectively.

  • PDF

Computer Simulation and Modeling of Cushioning Pneumatic Cylinder (공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

Numerical Analysis of Free Vibration of Parabolic Arches with Hinged Ends (양단(兩端)힌지 포물선(抛物線)아치의 자유진동(自由振動)에 관한 연구(研究))

  • Hwang, Hak Joo;Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-77
    • /
    • 1984
  • In this paper, the governing differential equations for the free vibration of uniform parabolic arches are derived on the basis of equilibrium equations of a small element of arch rib and the D'Alembert principle. A trial eigen value method is used for determining the natural frequencies and mode shapes. And the Runge-Kutta fourth order integration technique is also used in this method to perform the integration of the differential equations. A detailed study is made of the first mode for the symmetrical and anti-symmetrical vibrations of hinged arches with the Span length equal to 10 m. The effects of the rise of arch, the radius of gyration and the rotary inertia on free vibrations are presented in detail in curves and table.

  • PDF

Transverse and Diagonal Mode Structures of Three-dimensional Detonation Wave (3차원 데토네이션 파의 수평 및 대각선 모드 파면 구조)

  • Cho Deok-Rae;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.343-346
    • /
    • 2005
  • Three dimensional structures of detonation wave propagating through a square-shaped duct were investigated using computational method and parallel processing. Inviscid fluid dynamics equations coupled with $variable-{\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by MUSCL-type TVD scheme and four stage Runge-Kutta time integration. The unsteady computational results in three dimension show the detailed mechanism of transverse mode and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record.

  • PDF

Numerical Evaluation of Various Numerical Integration Methods in Free Vibration Analysis (자유진동 해석에서 수치적분기법의 수치적평가)

  • 송주한;안대순;오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1249-1253
    • /
    • 2001
  • Numerical analysis is sometimes used to solve the problems in the engineering and natural science fields. On this reason, the faster, more practical system in computing the numerical solution is required. This paper deals with the numerical evaluation of various numerical integration methods which is frequently used in the engineering fields. This paper choices four integration methods such as Euler method, Heun's method, Runge-Kutta method and Gill's method for evaluating the each integration method. In numerical examples, the free vibration problem on an elastic foundation is chosen. As the numerical results, the natural frequencies and the running time are obtained, and these results are compared to examine the practicality of integration methods.

  • PDF

Incompressible Viscous Analysis on Unstructured Meshes using Artificial Compressibility Method (가압축성 기법을 이용한 비정렬 격자상에서의 비압축성 점성해석)

  • Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.113-117
    • /
    • 1995
  • Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by artificial compressibility method. The governing equations are discretized by a cell-centered based finite-volume method. and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also validated with benchmark solution and experiment.

  • PDF

Variable Time Step Simulation and Analysis of Hydraulic Control Systems using Transmission Line Modeling (전달관로 모델링을 이용한 유압제어 시스템의 가변 시간스텝 시뮬레이션 및 해석)

  • Hwang, Un-Gyu;Jo, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.843-850
    • /
    • 2002
  • This paper presents a simulation method using the transmission line modeling to reduce simulation runtime of hydraulic control systems. This method is based on separating the system components each other using the transmission line elements prior to simulation, which leads to divide the simulated system into several subsystems suitable for an even more efficient integration. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. By applying variable integration timestep to parallel hydraulic circuits via parallel processing, it is shown that simulation run-time can be reduced significantly compared with that of Runge Kutta method.

Temperature Variations in the Natural Gas Pipeline with the Joule-Thomson Effect (Joule-Thomson 효과를 고려한 천연가스 배관내의 온도 변화)

  • Kim Youn J.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.14-19
    • /
    • 1997
  • A numerical method for determining the temperature vartiation in a natural gas transmission line is presented. By considering an element of the gas pipeline and assuming radially lumped heat transfer at steady-state conditions, the energy equation is developed. The integration of the developed nonlinear differential equation is done numerically using the fourth order Runge-Kutta scheme. The results of the present study have been compared with the results of Coulter equations, and show a fairly good agreement.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF