• 제목/요약/키워드: Runge Kutta method

검색결과 502건 처리시간 0.172초

주파수변화에 따른 형광램프 전압, 전류의 이론적 계산 (A Theoretical Calculation of Fluorescent Voltage and Current on Frequency Variation)

  • 이진우;남택주
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.233-235
    • /
    • 2003
  • The voltage and current of fluoescent lamp has been successfully calculated in the case of frequency variation. Energy states of mercury atom in the discharge process are regarded as six levels. These calculations have been accurately solved by numerically employing mixed the FDM and the 2nd Runge-Kutta method. The theoretical calculation results and experimental results were presented to verify the feasibility of the modeling. Calculation and experimental results were presented to verify the feasibility of the calculation.

  • PDF

지진시 옹벽의 수평변위 예측기법의 개발 (Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake)

  • 이승현;김병일
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.143-150
    • /
    • 2021
  • 본 연구에서는 지진시 옹벽의 수평변위량을 예측하는 기법을 개발하고자 옹벽과 지반의 진동시스템에 대한 운동 방정식을 유도하고 그로부터 도출되는 미분방정식은 Runge-Kutta-Nystrom 방법을 이용하여 해를 구하였다. 이러한 계산과정을 고려하여 지진시 옹벽의 수평변위를 얻는 해석과정을 프로그램화하였는데 해석기법의 핵심이 되는 변위-힘 관계를 탄성완전소성으로 모델링하는 계산 알고리즘을 제시하였다. 개발된 프로그램을 가정한 옹벽문제에 적용한 결과 해석을 통해 얻은 시간-변위관계와 시간-힘 관계 그리고 변위-힘 관계는 합리적인 결과를 보임을 알 수 있었다. 본 연구를 통해 개발된 해석기법에 의하면 진동시간이 경과함에 따라 옹벽에는 전면방향으로 변위가 발생되게 되는데 사이클당 변위량은 시간이 경과됨에 따라 일정한 값에 수렴됨을 알 수 있었다. 자연 진동주기에 따른 옹벽의 변위를 계산해 보았는데 한 개의 스프링을 적용한 경우의 스프링상수로부터 유도되는 자연 진동주기가 지진 진동주기와 같을 때 보다는 약간의 차이를 보일 때 변위가 가장 크게 계산되었다. 이러한 이유는 옹벽-지반 진동시스템이 강성이 다른 두 개의 스프링으로 모사되었기 때문으로 볼 수 있다.

불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석 (Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method)

  • 윤광희;이해균;이남주
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1383-1393
    • /
    • 2014
  • 최근, 급속한 컴퓨터 하드웨어의 성능 향상과 전산유체역학 분야의 이론적 발전으로, 고차 정확도의 수치기법들이 계산수리학 분야에 적용되어 왔다. 본 연구에서는 1차원 천수방정식에 대한 수치 해법으로 TVD Runge-Kutta 불연속 갤러킨(RKDG) 유한요소법을 적용하였다. 대표적인 천이류(transcritical flow)의 예로 순간적인 댐 붕괴에 의한 댐 붕괴류(dam-break flow) 흐름과 지형변화에 의한 천이류를 모의하였다. 리만(Riemann) 근사해법으로 로컬 Lax-Friedrichs (LLF), Roe, HLL 흐름률(flux) 기법을 사용하였고, 불필요한 진동을 제거하기 위하여, 기울기 제한자로서 MUSCL 제한자를 사용하였다. 개발된 모델은 1차원 댐 붕괴류와 천이류에 적용하였다. 수치해석 결과는 해석해, 수리실험 결과와 비교하였다.

Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석 (Free Vibrations and Buckling Loads of Beam-Columns on Winkler-Type Foundations)

  • 정진섭;이병구;오상진
    • 대한토목학회논문집
    • /
    • 제13권4호
    • /
    • pp.251-258
    • /
    • 1993
  • 이 논문은 Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석에 관한 연구이다. 축하중을 받는 탄성지반위에 놓인 보-기둥이 자유진동할 때 보-기둥 미소요소에 작용하는 힘들의 동적평형방정식으로부터 지배 미분방정식을 유도하였으며, 물리적인 특성관계를 이용하여 탄성지반위에 놓인 보-기둥의 좌굴을 지배하는 미분방정식을 직접 유동하였다. 유도된 미분방정식은 수치해석기법인 Runge-Kutta method와 행렬값 탐사법을 이용하여 해석하였다. 실제의 수치예에서는 양단회전 및 양단고정의 단부조건에 대하여 수치해석하였다. 수치해석의 결과로 무차원 고유진동수와 지반탄성계수 관계, 무차원 좌굴하중과 지반탄성계수 관계 및 축하중과 무차원 고유진동수 관계를 그림에 나타내었으며, 탄성지지구간의 변화에 따른 고유진동수 및 좌굴하중 변화를 고찰하였다. 또한 3구간으로 나누어지는 비균질 지반위에 놓인 보-기둥의 축하중과 고유진동수 관계를 고찰하였으며 이에 대한 진동형을 그림에 나타내었다.

  • PDF

양단(兩端)힌지 정현(正弦)아치의 자유진동(自由振動)에 관한 연구(研究) (Free Vibration Analysis of Hinged Ended Sinusoidal Arches)

  • 이병구
    • 대한토목학회논문집
    • /
    • 제7권3호
    • /
    • pp.101-109
    • /
    • 1987
  • 아치가 진동(振動)할 때 아치의 미소요소(微小要素)에 작용(作用)하는 합응력(合應力)과 D'Alembert의 관성력(慣性力)에 대한 평형방정식(平衡方程式)을 이용(利用)하여 회전관성(回轉慣性)을 고려(考慮)한 일반(一般)아치의 자유진동(自由振動)을 지배(支配)하는 미분방정식(微分方程式)을 유도(誘導)하였다. 이 미분방정식(微分方程式)을 정현(正弦)아치에 적용(適用)시키고, 시행착오적(試行錯誤的) 고유치문제(固有値問題)와 Runge-Kutta method를 이용(利用)하여 정현(正弦)아치의 자유진동(自由振動)을 해석(解析)할 수 있는 알고리즘을 개발(開發)하였다. 본(本) 연구(硏究)의 타당성(妥當性)을 검증(檢證)하기 위하여 본(本) 연구(硏究)의 수치해석(數値解析) 결과(結果)와 SAP IV의 결과(結果)가 잘 일치(一致)함을 보였다. 수치해석례(數値解析例)에서는 양단(兩端)힌지 아치에 대하여 회전관성(回轉慣性)이 고유진동수(固有振動數)에 미치는 영향(影響), 고유진동수(固有振動數)와 아치높이와의 관계(關係), 고유진동수(固有振動數)와 회전반경(回轉半徑)과의 관계(關係)를 고찰(考察)하였다.

  • PDF

자유표면을 포함한 선체주위 난류유동 해석 (Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 비압축성 Reynolds-Averaged Navier-Stokes 방정식을 수치 해석하여 자유표면을 포함한 선체 주위의 난류 유동을 계산하였다. 정규격자 상에서 공간의 이산화는 2차 정도의 유한차분법을, 시간의 적분에는 4단계 Runge-Kutta법을 이용하였고, 난류 닫힘 조건을 만족시키기 위해 Baldwin-Lomax 난류 모형을 사용하였다. 자유표면의 위치는 운동학적 경계조건식을 Lax-Wendroff법으로 풀어서 구하였고, 자유표면과 격자 경계면을 일치시키기 위해 매 시간마다 새로 계산된 자유표면 위치에 맞추어 격자를 새로 구성하였다. 속도와 압력에 대한 경계조건은 자유표면에서 점성을 무시하여 근사한 동역학적 조건을 적용해서 구하였다. 본 연구에서 개발된 수치해법을 검증하기 위하여 실험자료가 많은 Wigley 선형과 Sries 60 $C_B=0.6$ 선형에 대해 수치계산을 수행하였고 계산된 선체 주위의 파형이 실험 결과와 잘 일치하는 것을 확인하였다.

  • PDF

Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Ayed, Hamdi;Naeem, Muhammad N.;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ghandourah, E.;Taj, Muhammad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.603-615
    • /
    • 2020
  • The present manuscript focuses on the flow and heat transfer of the dusty fluid along exponentially stretching cylinder. Enormous attempts are made for fluid flow along cylinder but the study of fluid behavior along exponentially stretching cylinder is discussed lately. Using appropriate transformations, the governing partial differential equations are converted to non-dimensional ordinary differential equations. The transformed equations are solved numerically using Shooting technique with Runge-Kutta method. The influence of the physical parameters on the velocity and temperature profiles as well as the skin fraction coefficient and the local Nusselt number are examined in detail. The essential observations are as the fluid velocity decreases but temperature grows with rise in particle interaction parameter, and both the fluid velocity and temperature fall with increase in mass concentration parameter, Reynold number, Particle interaction parameter for temperature and the Prandtl number.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

여러 개의 스프링으로 탄성지지된 기둥의 자유진동 및 좌굴하중 (Free Vibrations and Buckling Loads of Columns with Multiple Elastic Springs)

  • 이병구;이광범;오상진;이태기
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1067-1074
    • /
    • 2000
  • 이 논문은 여러 개의 스프링으로 탄성지지된 기둥의 고유진동수와 좌굴하중에 산정에 관한 연구이다. 하나의 스프링을 폭이 매우 좁은 탄성지반으로 모형화하고, 이 모형을 이용하여 기둥의 자유진동과 좌굴된 기둥의 탄성곡선을 지배하는 미분방정식을 유도하였다. 이 미분방정식들을 Runge-Kutta법과 행열값 탐사법을 이용하여 미분방정식의 고유치 즉 고유진동수와 좌굴하중을 산정하였다. 수치해석 예에서는 고정-고정, 고정-회전, 회전-고정 및 회전-회전의 단부조건을 고려하였다. 수치해석의 결과로 기둥 변수들과 고유진동수 및 좌굴하중 사이의 관계를 고찰하고, 스프링으로 지지된 지지되지 않은 기둥의 진동형을 비교하였다.

  • PDF

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.