• Title/Summary/Keyword: Ruminococcus

Search Result 75, Processing Time 0.023 seconds

Effects of Mixtures of Tween80 and Cellulolytic Enzymes on Nutrient Digestion and Cellulolytic Bacterial Adhesion

  • Hwang, Il Hwan;Lee, Chan Hee;Kim, Seon Woo;Sung, Ha Guyn;Lee, Se Young;Lee, Sung Sill;Hong, Hee Ok;Kwak, Yong-Chul;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1604-1609
    • /
    • 2008
  • A series of in vitro and in vivo experiments were conducted to investigate the effects of the mixture of Tween 80 and cellulolytic enzymes (xylanase and cellulase) on total tract nutrient digestibility and rumen cellulolytic bacterial adhesion rates in Holstein steers. Ground timothy hay sprayed with various levels of Tween 80 and cellulolytic enzymes was used as substrates in an in vitro experiment to find out the best combinations for DM degradation. The application level of 2.5% (v/w) Tween 80 and the combination of 5 U xylanase and 2.5 U cellulase per gram of ground timothy hay (DM basis) resulted in the highest in vitro dry matter degradation rate (p<0.05). Feeding the same timothy hay to Holstein steers also improved in vivo nutrient (DM, CP, CF, NDF and ADF) digesibilities compared to non-treated hay (p<0.05). Moreover, Tween 80 and enzyme combination treatment increased total ruminal VFA and concentrations of propionic acid and isovaleric acid with decreased acetate to propionate ratio (p<0.001). However, adhesion rates of Fibrobacter succinogenes and Ruminococcus flavefaciens determined by Real Time PCR were not influenced by the treatment while that of Ruminococcus albus was decreased (p<0.05). The present results indicate that a mixture of Tween 80 and cellulolytic enzymes can improve rumen environment and feed digestibility with variable influence on cellulolytic bacterial adhesion on feed.

The Study on the Relationship between Changes of Rumen Microflora and Bloat in Jersey Cow (저지종 젖소의 반추위 내 미생물 균총 변화와 고창증 발병간의 상관관계 연구)

  • Kim, Sang Bum;Oh, Jong Seok;Jeong, Ha Yeon;Jung, Young Hun;Park, Beom Young;Ha, Seung Min;Im, Seok Ki;Lee, Sung Sill;Park, Ji Hoo;Park, Seong Min;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • This study was conducted to investigate the relationship between changes of rumen microflora and bloat in Jersey cow. Jersey cows (control age: 42 months, control weight: 558kg; treatment age: 29 months, treatment weight 507kg) were fed on the basis of dairy feeding management at dairy science division in National Institute of Animal Science. The change of microbial population in rumen was analyzed by using next generation sequencing (NGS) technologies due to metabolic disease. The diversity of Ruminococcus bromii, Bifidobacterium pseudolongum, Bifidobacterium merycicum and Butyrivibrio fibrisolvens known as major starch fermenting bacteria was increased more than 36-fold in bloated Jersey, while cellulolytic bacteria community such as Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens was increased more than 12-fold in non-bloated Jersey. The proportion of bacteroidetes and firmicutes was 33.4% and 39.6% in non-bloated Jersey's rumen, while bacteroidetes and firmicutes were 24.9% and 55.1% in bloated Jersey's. In conclusion, the change of rumen microbial community, in particular the increase in starch fermenting bacteria, might have an effect to occur the bloat in Jersey cow.

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers (반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향)

  • Park, Joong-Kook;Jeong, Chan-Sung;Park, Do-Yeun;Kim, Hyun-Cheol;Lee, Seung-Cheol;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry (양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1049-1057
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

Effect of Roughage Sources on Cellulolytic Bacteria and Rumen Ecology of Beef Cattle

  • Wora-anu, S.;Wanapat, Metha;Wachirapakorn, C.;Nontaso, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1705-1712
    • /
    • 2007
  • The effect of different tropical feed sources on rumen ecology, cellulolytic bacteria, feed intake and digestibility of beef cattle was investigated. Four fistulated, castrated male crossbred cattle were randomly allocated to a $4{\times}4$ Latin square design. The treatments were: T1) urea-treated (5%) rice straw (UTS); T2) cassava hay (CH); T3) fresh cassava foliage (FCF); T4) UTS:FCF (1:1 dry matter basis). Animals were fed concentrates at 0.3% of body weight on a DM basis and their respective diets on an ad libitum basis. The experimental period was 21 days. The results revealed that the use of UTS, CH, FCF and UTS:FCF as roughage sources could provide effective fiber and maintain an optimal range of ruminal pH and $NH_3-N$. Total viable and cellulolytic bacterial populations were enhanced (p<0.05) with UTS as the roughage source. Animals fed FCF had a higher rumen propionate production (p<0.05) with a lower cellulolytic bacteria count. Moreover, three predominant cellulolytic bacteria species, namely Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens, were found in all treatment groups. Roughage intake and total DM intake were highest with UTS (2.2 and 2.5% BW, respectively) as the roughage source (p<0.05). Nutrient intake in terms of organic matter intake (OMI) was similar in UTS, CH and UTS:FCF treatments (8.0, 6.8 and 8.7 kg/d, respectively), while crude protein intake (CPI) was enhanced in CH, FCF and UTS:FCF as compared to the UTS treatment (p<0.05). Digestion coefficients of DM and organic matter (OM) were similar among treatments, while the CP digestion coefficients were similar in CH, FCF and UTS:FCF treatments, but were higher (p<0.05) in CH than in UTS. CP and ADF digestible intakes (kg/d) were highest (p<0.05) on the CH and UTS treatments, respectively. It was also observed that feeding FCF as a full-feed resulted in ataxia as well as frequent urination; therefore, FCF should only be fed fresh as part of the feed or be fed wilted. Hence, combined use of FCF and UTS as well as CH and FCF were recommended.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Effects of Protein Level and Mangosteen Peel Pellets (Mago-pel) in Concentrate Diets on Rumen Fermentation and Milk Production in Lactating Dairy Crossbreds

  • Norrapoke, T.;Wanapat, M.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.971-979
    • /
    • 2012
  • Four, lactating dairy crossbreds ($50%{\times}50%$ Holstein Friesian${\times}$Native Zebu cattle) were randomly assigned according to a $2{\times}2$ factorial arrangement (two protein levels and two levels of mangosteen peel pellets (Mago-pel)) in a $4{\times}4$ Latin square design to receive four dietary treatments. All cows received concentrate at a proportion of 1 kg concentrate per 2 kg of milk yield, and urea-treated 5% rice straw (UTRS) was given ad libitum. It was found that total dry matter intakes, nutrient digestibility, ruminal pH and $NH_3$-N concentrations were not affected (p>0.05) by treatments. Concentrations of ruminal pH and $NH_3$-N were not affected by dietary treatments although the concentration of BUN varied significantly (p<0.05) between protein levels (p<0.05). The populations of rumen bacteria and fungal zoospores did not differ among treatments (p>0.05); however, the population of protozoa was decreased (p<0.05) when cows received Mago-pel supplementation. The composition of the population of bacteria, identified by real-time PCR technique, including total bacteria, methanogens, Fibrobacter succinogenes and Ruminococcus albus was similar (p>0.05) among dietary treatments (p>0.05); however, copy numbers of Ruminococcus flavefaciens was increased when protein level increased (p<0.05). Microbial protein synthesis, in terms of both quantity and efficiency, was enriched by Mago-pel supplementation. Milk yield was greatest in cows fed UTRS based diets with concentrate containing protein at 16% CP with Mago-pel, but were lowest without Mago-pel (p<0.05). In addition, protein level and supplementation of Mago-pel did not affect (p>0.05) milk composition except solids-not-fat which was higher in cows fed the diet with 19% CP. Therefore, feeding a concentrate containing 16% CP together with 300 g/hd/d Mago-pel supplementation results in changes in rumen fermentation and microbial population and improvements in milk production in lactating dairy crossbreds fed on UTRS.

Effect of PVA-Encapsulation on Hydrogen Production and Bacterial Community Structure (수소 생산과 세균 군집구조에 미치는 PVA-포괄고정화의 영향)

  • Yun, Jeonghee;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this study, the performances of PVA-encapsulation and non-encapsulation in a fed-batch bioreactor system were compared for biohydrogen production. Hydrogen production in the PVA-encapsulation bioreactor was not significantly different in comparison to the non-encapsulation bioreactor. However, the hydrogen gas in the encapsulation bioreactor could be stably produced when it was exposed to environmental difficulties such as pH impact by the accumulation of organic acids as fermentative metabolic products. Bacterial communities by DGGE analysis were differently shifted between the PVA-encapsulation and non-encapsulation bioreactors from the initial sludge. The community of hydrogen producing bacteria was stable during the experimental period in the PVA-encapsulation bioreactor compared to the non-encapsulation method. The absolute quantitation of the DNA copy number by a high-throughput droplet digital PCR system for six genera contributed to hydrogen production showing that the numbers of dominant bacteria existed at similar levels in the two bioreactors regardless of encapsulation. In both of two bioreactors, not only Clostridium and Enterobacter, which are known as anaerobic hydrogen producing bacteria, but also Firmicutes, Ruminococcus and Escherichia existed with $1{\times}10^5-1{\times}10^6$ copy numbers of ml-samples exhibiting rapid growth during the initial operation period.