Browse > Article
http://dx.doi.org/10.4014/kjmb.1311.11008

Effect of PVA-Encapsulation on Hydrogen Production and Bacterial Community Structure  

Yun, Jeonghee (Department of Environmental Science and Engineering, Ewha Womans University)
Kim, Tae Gwan (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.42, no.1, 2014 , pp. 41-50 More about this Journal
Abstract
In this study, the performances of PVA-encapsulation and non-encapsulation in a fed-batch bioreactor system were compared for biohydrogen production. Hydrogen production in the PVA-encapsulation bioreactor was not significantly different in comparison to the non-encapsulation bioreactor. However, the hydrogen gas in the encapsulation bioreactor could be stably produced when it was exposed to environmental difficulties such as pH impact by the accumulation of organic acids as fermentative metabolic products. Bacterial communities by DGGE analysis were differently shifted between the PVA-encapsulation and non-encapsulation bioreactors from the initial sludge. The community of hydrogen producing bacteria was stable during the experimental period in the PVA-encapsulation bioreactor compared to the non-encapsulation method. The absolute quantitation of the DNA copy number by a high-throughput droplet digital PCR system for six genera contributed to hydrogen production showing that the numbers of dominant bacteria existed at similar levels in the two bioreactors regardless of encapsulation. In both of two bioreactors, not only Clostridium and Enterobacter, which are known as anaerobic hydrogen producing bacteria, but also Firmicutes, Ruminococcus and Escherichia existed with $1{\times}10^5-1{\times}10^6$ copy numbers of ml-samples exhibiting rapid growth during the initial operation period.
Keywords
Polyvinyl alcohol (PVA); encapsulation; hydrogen production; bacterial community;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wicher E, Seifert K, Zagrodnik R, Pietrzyk B, Laniecki M. 2013. Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrogen Energy 38: 7767-7773.   DOI   ScienceOn
2 Wang X, Monis PT, Saint CP, Jin B. 2009. Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5. Int. J. Hydrogen Energy 34: 791-798.   DOI   ScienceOn
3 Watanabe K, Kodama Y, Hrayama S. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Meth. 44: 253-262.   DOI   ScienceOn
4 Westman JO, Ylitervo P, Franzen CJ, Taherzadeh MJ. 2012. Effects of encapsulation of microorganisms on product formation during microbial fermentations. Appl. Microbiol. Biotechnol. 96: 1441-1454.   DOI   ScienceOn
5 Willquist K, Van Niel EWJ. 2012. Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int. J. Hydrogen Energy 37: 4925-4929.   DOI   ScienceOn
6 Wu KJ, Chang JS. 2007. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem. 42: 279-284.   DOI   ScienceOn
7 Zahedi S, Sales D, Romero LI, Solera R. 2013. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresour. Technol. 129: 85-91.   DOI   ScienceOn
8 Zajkoska P, Rebroš M, Rosenberg M. 2013. Biocatalysis with immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 97: 1441-1455.   DOI
9 Zhao L, Cao GL, Wang AJ, Guo WQ, Liu BF, Ren HY, et al. 2012. Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int. J. Hydrogen Energy 37: 162-166.   DOI   ScienceOn
10 Oh CH, Cho HY, Yang HC. 1995. Effects of chitosan on cell flocculation in soybean curd wastewater teated by photosyntheric bacteria. Korean J. Appl. Microbiol. Biotechnol. 23: 763-769.
11 Li X, Hu A, Ye L. 2011. Structure and property of porous polyvinyl alcohol hydrogels for microorganism immobilization. J. Polym. Environ. 19: 398-404.   DOI
12 Mehdizadeh AM, Klausner JF, Barde A, Mei R. 2012. Enhancement of thermochemical hydrogen production using an iron-silica magnetically stabilized porous structure. Int. J. Hydrogen Energy 37: 8954-8963.   DOI   ScienceOn
13 Nakao M, Kawagoshi Y, Hino N, Iwasa T, Furukawa K. 2007. Stable fermentative hydrogen production by polyvinyl alcohol (PVA) gel beads fluidized bed reactor. Korean Wetlands Soc. 9: 115-121.
14 Perera KRJ, Ketheesan B, Arudchelvam Y, Nirmalakhandan N. 2012. Fermentative biohydrogen production II: net energy gain form organic wastes. Int. J. Hydrogen Energy 37: 167-178.   DOI   ScienceOn
15 Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han J. 2013. Current status, barriers and developments in biohydrogen production by microalgae. Renew. Sust. Energy Rev. 22: 571-579.   DOI   ScienceOn
16 Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR. 2013. Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew. Energy 50: 488-493.   DOI   ScienceOn
17 Song SH, Choi SS, Park K, Yoo YJ. 2005. Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microb. Technol. 37: 567-573.   DOI   ScienceOn
18 Stiebritz MT, Reiher M. 2012. Hydrogenases and oxygen. Chem. Sci. 3: 1739-1751.   DOI
19 Takai K, Horikoshi K. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66: 5066- 5072.   DOI   ScienceOn
20 Khondee N, Tathong S, Pinyakong O, Powtongsook S, Chatchupong T, Ruangchainikom C, et al. 2012. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater. J. Hazard. Mater. 213- 214: 466-473.   DOI
21 Huijsdens XW, Linskens RK, Mak M, Meuwissen SGM, Vandenbroucke- Grauls CMJE, Savelkoul PHM. 2002. Quantification of bacteria adherent to gastrointestinal mucosa by realtime PCR. J. Clin. Microbiol. 40: 4423-4427.   DOI
22 Jiang H, Wu Y, Fan H, Ji J. 2012. Hydrogen production from biomass pyrolysis in Molten Alkaki. AASRI Procedia 3: 217-223.   DOI   ScienceOn
23 Keskin T, Giusti L, Azbar N. 2012. Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int. J. Hydrogen Energy 37: 1418-1424.   DOI   ScienceOn
24 Kim JO, Kim YH, Ryu JY, Song BK, Kim IH. 2003. Continuous hydrogen gas production by immobilized anaerobic microorganism. Korean J. Biotechnol. Bioeng. 18: 111-116.
25 Kim JS, Hong YK, Sin IS, Cho HR, Chang DS. 1992. Effective supply of substrate for hydrogen production by immobilized cells of Rhodopseudomonas sphaeroides. Korean J. Appl. Microbiol. Biotechnol. 20: 79-84.
26 Kothari R, Singh DP, Tyagi VV, Tyagi SK. 2013. Fermentative hydrogen production - An alternative clean energy source. Renew. Sust. Energy Rev. 16: 2337-2346.
27 Kumar SS, Kumar MS, Siddavattam D, Karegoudar TB. 2012. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents. J. Hazard. Mater. 199-200: 58-63.   DOI   ScienceOn
28 Lee K, Huh Y, Chung S, Kang C. 2005. Hydrogen production from fruit wastes by immobilized cells of Enterobacter cloacae YJ-1. Korean J. Biotechnol. Bioeng. 20: 447-452.
29 Choi JW, Lee SY, Chung SG, Lee SH. 2011. Development of the calcium alginate bead immobilized with $TiOSO_4$ for the efficient removal of phosphorous. J. Korean Soc. Environ. Eng. 33: 162-166.   DOI   ScienceOn
30 Bingham AS, Smith PR, Swartz JR. 2012. Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int. J. Hydrogen Energy 37: 2965-2976.   DOI   ScienceOn
31 Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, et al. 2009. Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol. Adv. 27: 686-714.   DOI   ScienceOn
32 Chen K, Chen S, Houng J. 1996. Improvement of gas permeability of denitrifying PVA gel beads. Enzym. Microb. Tech. 18: 502-506.   DOI   ScienceOn
33 Chu A, Mavinic DS, Kelly HG, Ramey WD. 1994. Volatile fatty acid production in thermophilic aerobic digestion of sludge. Water Res. 28: 1513-1522.   DOI   ScienceOn
34 Dembczynski R, Jankowski T. 2002. Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/ starch liquid-core capsules. Enzyme Microb. Technol. 31: 111-115   DOI   ScienceOn
35 El-Bery H, Tawfix A, Kumari S, Bux F. 2013. Effect of thermal pre-treatment on inoculums sludge to enhance bio-hydrogen production from alkali hydrolyzed rice straw in a mesophilic anaerobic baffled reactor. Environ. Technol. 34: 1965-1972.   DOI   ScienceOn
36 Haakensen M, Dobson CM, Deneer H, Ziola B. 2008. Realtime PCR detection of bacteria belonging to the Firmicutes Phylum. Int. J. Food Microbiol. 125: 236-241.   DOI   ScienceOn
37 Han MS, Chung DH. 1992. Cell immobilization of Zymomonas mobilis by entrapment. Korean J. Appl. Microbiol. Biotechnol. 20: 459-469.
38 Huang ST, Chang ACC. 2013. Multivariate statistics to evaluate factors affecting hydrogen production in a pilot-scale operation system. Int. J. Hydrogen Energy 38: 15843-15848.   DOI   ScienceOn
39 Aguilar MAR, Fdez-Guelfo LA, Alvarez-Gallego CJ, Garcia LIR. 2013. Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chem. Eng. J. 219: 443-449.   DOI
40 Bai MD, Chao YC, Lin YH, Lu WC, Lee HT. 2008. Immobilized biofilm used as seeding source in batch biohydrogen fermentation. ISESCO Sci. Technol. Vision 4: 55-59.