• 제목/요약/키워드: Ruminal Digestibility

Search Result 258, Processing Time 0.02 seconds

Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes

  • Wanapat, M.;Pimpa, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.904-907
    • /
    • 1999
  • The experiment was aimed at studying the effect of ruminal $NH_3-N$ levels on ruminal fermentation, microbial population, urinary purine derivative excretion, digestibility and rice straw intake in swamp buffaloes. Five, 3 to 4 years old, rumen fistulated swamp buffaloes were randomly assigned according to a $5{\times}5$ Latin square design to rceive five different intraruminal infusions of $NH_4HCO_3$ (0, 150, 300, 450 and 600 g/d) on a continuous daily basis. Rice straw as a roughage was offered ad libitum while concentrate was given at 0.8% BW daily. The results were that as levels of $NH_4HCO_3$ increased, ruminal $NH_3-N$ concentrations increased from 7.1 to 34.4 mg%. The highest digestibility and voluntary straw intakes were found at 13.6 to 17.6 mg% ruminal $NH_3-N$ levels; straw intake was highest at 13.6 mg%. Total bacterial and protozoal counts linearly increased as the ruminal $NH_3-N$ increased and were highest at 17.6 mg%. Total urinary purine derivatives and allantoin excretion were highest (44.0, 37.4 mM/d) at 17.6 mg% ruminal $NH_3-N$. Highest total VFAs (115 mM) were obtained a 13.6 mg% ruminal $NH_3-N$ while blood urea nitrogen significantly increased as ruminal $NH_3-N$ increased. The results from this experiment suggest that optimum ruminal $NH_3-N$ in swamp buffaloes is higher than 13.6 mg%, for improving rumen ecology, microbial protein synthesis, digestibility and straw intake.

Ruminal and Intestinal Digestibility of Some Tropical Legume Forages

  • Khamseekhiew, B.;Liang, J.B.;Wong, C.C.;Jalan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.321-325
    • /
    • 2001
  • Two experiments were conducted to examine the degradation rates of 4 tropical legume forages in rumen and intestine of Kedah-Kelantan (KK) cattle. Three KK cattle, averaging $173{\pm}17.15kg$ each fitted with a permanent ruminal and a T-shaped duodenal cannulae were used. The cattle were fed a maintenance diet (1% DM of their body weight) composing of 60% oil palm frond (OPF) pellet and 40% of a legume mixture of Arachis pintoi (AP) and Leucaena throughout the study. The overall DM and CP degradabilities in the rumen for Gliricidia sepium (GS) and AP were significantly higher than those for Leucaena leucocephala-Bahru (LB) and Leucaena leucocephala-Rendang (LR). This implies that LB and LR would have higher dietary protein flows into the intestine for the more efficient enzymatic digestion. However, the results of the present study suggested only limited proportions of the ruminal undegraded protein in the Leucaenas were digested in the intestine.

Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats

  • Zhao, X.G.;Wang, M.;Tan, Z.L.;Tang, S.X.;Sun, Z.H.;Zhou, C.S.;Han, X.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1256-1266
    • /
    • 2009
  • Effects of particle size and physical effective fibre (peNDF) of rice straw in diets on chewing activities, feed intake, flow, site and extent of digestion and rumen fermentation in goats were investigated. A 4${\times}$4 Latin square design was employed using 4 mature Liuyang black goats fitted with permanent ruminal, duodenal, and terminal ileal fistulae. During each of the 4 periods, goats were offered 1 of 4 diets that were similar in nutritional content but varied in particle sizes and peNDF through alteration of the theoretical cut length of rice straw (10, 20, 40, and 80 mm, respectively). Dietary peNDF contents were determined using a sieve for particle separation above 8 mm, and were 17.4, 20.9, 22.5 and 25.4%, respectively. Results showed that increasing the particle size and peNDF significantly (p<0.05) increased the time spent on rumination and chewing activities, duodenal starch digestibility and ruminal pH, and decreased ruminal starch digestibility and $NH_{3}$-N concentration. Intake and total tract digestibility of nutrients (i.e. dry matter, organic matter, and starch) and ruminal fermentation were not affected by the dietary particle size and peNDF. Increased particle size and peNDF did not affect ruminal fibre digestibility, but had a great impact on the intestinal and total tract fibre digestibility. The study suggested that rice straw particle size or dietary peNDF was the important influential factor for chewing activity, intestinal fibre and starch digestibility, and ruminal pH, but had minimal impact on feed intake, duodenal and ileal flow, ruminal and total tract digestibility, and ruminal fermentation.

Effects of Processing Methods and Variety of Rapeseed Meal on Ruminal and Post Ruminal Amino Acids Digestibility

  • Chen, Xibin;Qin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.802-806
    • /
    • 2005
  • The objective of this study was to determine the effects of processing method and rapeseed variety on ruminal and intestinal protein digestibility of rapeseed meal in steers. Intestinal amino acid digestibility was assessed with an in situ ruminal incubation and precision-fed rooster bioassay. In this experiment one traditional rapeseed meal sample (sample A, prepress extraction) and three double low rapeseed meal samples (sample B, prepress extraction, sample C, screw press and sample D, low temperature press) were placed in polyester bags(8 cm${\times}$12 cm) and suspended in the ventral rumen of steers for 16 h. The residues of in situ incubations were intubated to roosters. Total excreta were collected for 48 h after incubation and then desiccated and amino acid concentrations were determined. Results showed that in ruminal incubation the degradation rate of amino acid and crude protein was higher for traditional rapeseed meal sample A than for double low rapeseed meal sample B, but was much lower than for double low sample C and D. In the group of double low rapeseed meal samples, sample D processed by low temperature press had the highest degradation rate of amino acids in the rumen. For all amino acids, the digestibility of the residual protein as measured by the precision-fed rooster bioassay tended to be lower for sample B than for sample A, which had the same processing method with sample B, and in the group of double low rapeseed meals, sample B had similar digestibility of amino acid in residual protein to sample D and higher than that of sample C. However, although the total amino acid availability involving the digestibility of amino acids in the rumen and rooster bioassay of double low rapeseed meal sample D (low temperature press) was higher than those of the other three samples by 7 to 9 percent, there were no significant differences. Results indicated that processing method markedly affected ruminal and post ruminal amino acid digestibility of rapeseed meal when the temperature exceeded 110$^{\circ}C$. Rapeseed meal that had a high content of fiber was not suitable for dry heat treatment at higher temperatures or the amino acids digestibility in rumen and total availability of amino acids could be reduced. Results also suggested the variety of rapeseed meal had no significant effect on the digestibility and availability of amino acids.

Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake

  • Karlsson, Linda;Ruiz-Moreno, M.;Stern, M.D.;Martinsson, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1559-1567
    • /
    • 2012
  • The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or $130^{\circ}C$, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The $130^{\circ}C$ treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The $130^{\circ}C$ treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at $130^{\circ}C$ did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants.

Assessment of Ruminal and Post Ruminal Amino Acid Digestibility of Chinese and Canadian Rapeseed (Canola) Meals

  • Chen, Xibin;Campbell, Lloyd D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.979-982
    • /
    • 2003
  • Two rapeseed meal samples (Sample A, hybrid 5900 and sample B, double low rapeseed No.4) obtained from China and one Canola meal sample obtained from a local crushing plant in Canada were used to investigate the amino acid degradability of rapeseed/Canola meal in rumen and amino acid digestibility of ruminal incubation residues by precision-fed rooster bioassay. Results show that in ruminal incubation the degradation rate of non amino acid nitrogen in crude protein is higher than that for amino acid nitrogen in crude protein, the results also suggest that the degradation rate of amino acid nitrogen in Chinese rapeseed meal sample B was lower than that for Canadian Canola, but that in Chinese rapeseed meal sample A is much close to that for Canadian canola meal. For all amino acids the digestibility of the bypass or residual protein as measured by the precision-fed rooster bioassay tended to be lower for Chinese rapeseed meal sample A than for sample B or Canadian canola meal which had similar digestibility values. However following a calculation of total amino acid availability, involving the digestibility of amino acids in the rumen and rooster bioassay the results are less contradictory. Results indicated that in traditional roasting-expelling process, heat treatment, especially dry heat treatmeat could decrease amino acids degradability in rumen of rapeseed/canola meal, but also may decrease total availability of amino acids of rapeseed/canola meal.

Ruminal Characteristics, Blood pH, Blood Urea Nitrogen and Nitrogen Balance in Nili-ravi Buffalo (Bubalus bubalis) Bulls Fed Diets Containing Various Levels of Ruminally Degradable Protein

  • Javaid, A.;Nisa, Mahr-un;Sarwar, M.;Aasif Shahzad, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Four ruminally cannulated Nili-ravi buffalo bulls were used in a $4{\times}4$ Latin Square design to determine the influence of varying levels of ruminally degradable protein (RDP) on ruminal characteristics, digestibility, blood pH, blood urea nitrogen (BUN) and nitrogen (N) balance. Four isonitrogenous and isocaloric diets were formulated (NRC, 2001). The control diet contained 50% RDP. The medium (MRDP), high (HRDP) and very high (VHRDP) ruminally degradable protein diets had 66, 82 and 100% RDP, respectively. Increasing the level of dietary RDP resulted in a linear decrease in ruminal pH. A quadratic effect of RDP on ruminal pH was also observed with quadratic maxima at the 66% RDP diet. Dietary RDP had a quadratic effect on total bacterial and protozoal count with maximum microbial count at the 82% RDP diet. Increased microbial count was due to increasing level of ruminal ammonia nitrogen ($NH_3-N$). Increasing dietary RDP resulted in a linear increase in dry matter digestibility. Provision of an adequate amount of RDP caused optimum microbial activity, which resulted in improvement in DM digestibility. Increasing the level of dietary RDP resulted in a linear decrease in crude protein (CP) and neutral detergent fiber digestibility. Blood pH remained unaltered across all diets. A linear increase in ruminal $NH_3-N$ and BUN was noted with increasing level of dietary RDP. The increase in BUN was due to increased ruminal $NH_3-N$ concentrations. A positive N balance was noted across all diets. The results are interpreted to suggest that buffalo bulls can utilize up to 82% RDP of total CP (16%) with optimum results.

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.

Ruminal Dry Matter and Fiber Characteristics of Rice Hulls-bedded Broiler Litter Compared with Rice Straw

  • Kwak, W.S.;Park, J.M.;Park, K.K.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.207-212
    • /
    • 2004
  • Ruminal digestion of dry matter (DM) and neutral detergent fiber (NDF) of processed (ensiled, deepstacked or composted) broiler litter (BL) was determined in situ and in vitro, and compared with rice straw (RS). DM disappearances at 24 and 48 h and digestion of differently processed BL were higher than those of RS. Compared with RS, processed BL was low in NDF disappearance at 72 h incubation, digestion rate ($K_dB$) and digestibility at 0.025 of passage rate; however, deepstacked BL was similar in these NDF characteristics. Processing of BL affected ruminal digestion of nutrients such as DM and NDF adversely. NDF of composted BL, especially, was the most indigestible. This in situ nutritional evaluation indicated that deepstacked BL, the most widely used form of BL, was superior in DM characteristics (fractions, ruminal disappearance and digestibility) and similar in NDF characteristics (ruminal disappearance and digestibility) to RS.