• Title/Summary/Keyword: Rumen fermentation characteristics

Search Result 196, Processing Time 0.026 seconds

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

  • Wann, Chinda;Wanapat, Metha;Mapato, Chaowarit;Ampapon, Thiwakorn;Huang, Bi-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1153-1160
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls ($190{\pm}2kg$) were randomly allotted to four respective dietary treatments in a $4{\times}4$ Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal $NH_3-N$ concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

Effects of Dietary n-3/n-6 Fatty Acid Ratio on In Vitro Fermentation Characteristics and Fatty Acid Profiles

  • Kim, Dong-Hyeon;Amanullah, Sadar M.;Yoon, Hee;Lee, Hyuk-Jun;Kong, Il-Keun;Kim, Sam-Churl;Cho, Kyu-Woan;Kim, Sang-Bum
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.79-85
    • /
    • 2012
  • This study was conducted to examine the effect of dietary n-3/n-6 fatty acid (FA) ratio on in vitro dry matter digestibility (IVDMD), fermentation indices and FA profile. Rice bran was mixed with oil sources (cotton seed oil and linseed oil) to make the diets at 0.02, 0.29 and 0.61 of dietary n-3/n-6 FA ratio. These diets (0.5g) were placed into the incubation bottles with 40 ml of anaerobic culture medium, which contained rumen fluid and Van Soest medium at 1:2 ratio. Five replicates of each diet and two blanks were incubated at $39^{\circ}C$ for 48 hours. After incubation, the incubated contents were centrifuged. The residues were freeze-dried for DMD and FA analyses. The supernatant was used for pH, $NH_3-N$ and volatile fatty acid analyses. The concentrations of lactate (p<0.001) and iso-valerate (p<0.001) decreased linearly with increasing dietary n-3/n-6 FA ratio, but acetate concentration (p=0.056) and the ratio of acetate to propionate (p=0.005) was increased linearly. The concentrations of n-3, n-6 FA and the ratio of n-3/n-6 FA in residues increased (p<0.001) linearly with increasing dietary n-3/n-6 FA ratio, but C18:1n-9 FA concentration was decreased (p<0.001) linearly. With these results, it could affect fermentation characteristics and FA profile of rumen content by dietary n-3/n-6 FA ratio.

Effects of Eucalyptus Crude Oils Supplementation on Rumen Fermentation, Microorganism and Nutrient Digestibility in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Cherdthong, A.;Kang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • This study was conducted to investigate the effects of eucalyptus (E. Camaldulensis) crude oils (EuO) supplementation on voluntary feed intake and rumen fermentation characteristics in swamp buffaloes. Four rumen fistulated swamp buffaloes, body weight (BW) of $420{\pm}15.0$ kg, were randomly assigned according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The dietary treatments were untreated rice straw (RS) without EuO (T1) and with EuO (T2) supplementation, and 3% urea-treated rice straw (UTRS) without EuO (T3) and with EuO (T4) supplementation. The EuO was supplemented at 2 mL/h/d in respective treatment. Experimental animals were kept in individual pens and concentrate mixture was offered at 3 g/kg BW while roughage was fed ad libitum. Total dry matter and roughage intake, and apparent digestibilites of organic matter and neutral detergent fiber were improved (p<0.01) by UTRS. There was no effect of EuO supplementation on feed intake and nutrient digestibility. Ruminal pH and temperature were not (p>0.05) affected by either roughage sources or EuO supplementation. However, buffaloes fed UTRS had higher ruminal ammonia nitrogen and blood urea nitrogen as compared with RS. Total volatile fatty acid and butyrate proportion were similar among treatments, whereas acetate was decreased and propionate molar proportion was increased by EuO supplementation. Feeding UTRS resulted in lower acetate and higher propionate concentration compared to RS. Moreover, supplementation of EuO reduced methane production especially in UTRS treatment. Protozoa populations were reduced by EuO supplementation while fungi zoospores remained the same. Total, amylolytic and cellulolytic bacterial populations were increased (p<0.01) by UTRS; However, EuO supplementation did not affect viable bacteria. Nitrogen intake and in feces were found higher in buffaloes fed UTRS. A positive nitrogen balance (absorption and retention) was in buffaloes fed UTRS. Supplementation of EuO did not affect nitrogen utilization. Both allantoin excretion and absorption and microbial nitrogen supply were increased by UTRS whereas efficiency of microbial protein synthesis was similar in all treatments. Findings of present study suggested that EuO could be used as a feed additive to modify the rumen fermentation in reducing methane production both in RS and UTRS. Feeding UTRS could improve feed intake and efficiency of rumen fermentation in swamp buffaloes. However, more research is warranted to determine the effect of EuO supplementation in production animals.

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Jeong, Jin Suk;Shin, Nyeon Hak;Lee, Su Kyoung;Kim, Hyun Sang;Eom, Jun Sik;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1864-1872
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

Anti-inflammatory Effect of Natural Plant Extracts on in vitro Rumen Fermentation and Methane Emission (천연 식물 추출물의 항염 효과가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Lim, Jung Hwa;Son, Chang Jun;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.97-109
    • /
    • 2017
  • This study was conducted to investigate the effects of anti-inflammatory plant extracts on the in vitro rumen fermentation characteristics and methane emission. Anti-inflammatory plant extracts from Morus bombycis Koidz, Mallotus japonicus L., Morus alba L., Paulownia coreana Uyeki, Isodon japonicus Hara and Ginkgo biloba L. were used in the study. The ruminal fluid(5 mL), McDougall buffer(10 mL), timothy as a substrate(0.3 g) and each anti-inflammatory plant extract(5% of substrate) were dispensed anaerobically into 50mL serum bottle. The mixtures were incubated for 3, 9, 12, 24, 48 and 72h at $39^{\circ}C$ without shaking. Supplementation of the anti-inflammatory plant extracts did not effects characteristics(pH, digestibility of dry matter, glucose concentration, ammonia concentration, protein concentration, VFA) on rumen fermentation. Total gas was showed a different pattern depending on treatments. Carbon dioxide was significantly(p<0.05) higher in Morus alba and Isodon japonicus than in control at 48h. Methane was significantly(p<0.05) lower in treatment than in control at initial fermentation. However the more incubation time was increased, the more methane emission was higher in treatment than in control. The concentrations of polyphenol and flavonoid were higher in Ginkgo biloba. In conclusion, supplementation of the anti-inflammatory plant extracts did not effect on rumen fermentation and methane emission was decreased in initial fermentation.

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

Effect of Ensilage of Rye Treated with Formic Acid and Lactic Acid Bacteria Inoculant on Ruminal Fermentation Characteristics (개미산과 유산균제 첨가 베일 사일리지의 발효 차이가 반추위 발효 특성에 미치는 영향)

  • Kim, Jayeon;Bharanidharan, Rajaraman;Bang, Geumhwi;Jeong, Soonwoo;Park, Seol Hwa;Oh, Young Kyoon;Kim, Jong Geun;Kim, Kyoung Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.244-250
    • /
    • 2020
  • This study investigated the effects of silage additives on rumen fermentation characteristics of rye silage. Rye was harvested at ripening stage and treated with different additives in quadruplicate following: without additive (control), with either lactic acid bacteria inoculant (LAB), formic acid (FA), or Ca-formate (Ca-FA). Overall, ensiling characteristics of FA and Ca-FA silages contained 4-fold more (P<0.05) butyrate and 2-fold more (P<0.05) NH3-N concentration (% total nitrogen) than those of control and LAB silages. Cows fed LAB silage showed a diurnal trend with the highest values of propionate concentration compared to the control at 1, 2 and 3 hr after feeding. In contrast, FA and Ca-FA silages increased the proportion of butyrate significantly (P<0.05) at all sampling times compared to control and LAB silage. In conclusion, Forage rye treated with FA or Ca-FA showed different fermentation characteristics during ensilage and in the rumen compared to LAB silage. Further studies are needed to evaluate whether different fermentation characteristics in the rumen between LAB and FA silages had effect on partitioning of nutrients between milk production and body tissue.

Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use

  • Mousa, Shimaa A;Malik, Pradeep K.;Kolte, Atul P.;Bhatta, Raghavendra;Kasuga, Shigemitsu;Uyeno, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.103-109
    • /
    • 2019
  • Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant. A defined feed component with or without FB samples (both fresh and ensiled material) were subjected to in vitro anaerobic culturing using rumen fluid sampled from beef cattle, and the fermentation parameters and microbial populations were monitored. Results: Reduced methane production and a proportional change in total volatile fatty acids (especially enhanced propionate proportion) was noted in bottles containing the FBs compared with that in the control (without FB). In addition, we found lower gene copy number of archaeal 16S rRNA and considerably higher levels of one of the major fibrolytic bacteria (Fibrobacter succinogenes) in the bottles containing FBs than in the control, particularly, when it was included in a forage-based feed. However, in the following cultivation experiment, we observed that FBs failed to exhibit a significant difference in methane production with or without polyethylene glycol, implying that tannins in the FBs may not be responsible for the mitigation of methane generation. Conclusion: The results of the in vitro cultivation experiments indicated that not only the composition but also ensiling of FBs affected rumen fermentation patterns and the degree of methane generation. This is primarily because of the compositional changes in the fibrous fraction during ensiling as well as the presence of readily fermented substrates, whereas tannins in these FBs seemed to have little effect on the ruminal fermentation kinetics.

Effect of Herbal Extracts Supplementation on Ruminal Methane Production and Fermentation Characteristics In vitro (한약재 추출물 첨가가 in vitro 반추위 발효 시 메탄생성 및 발효성상에 미치는 영향)

  • Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1315-1322
    • /
    • 2011
  • This study was conducted to investigate the effects of several herbal extracts (obtusifolia, cinnamon, chinese pepper, licorice root) on the characteristics of rumen fermentation in vitro. Soybean meal was used as a substrate for fermentation in vitro. Herbal extracts were supplemented to media by 10% of the substrate. The substrates supplemented to Dehority artificial media with herbal extracts were fermented in 30ml serum bottles for 0, 3, 6, 9, 12 and 24 hr at $39^{\circ}C$. Cumulative gas production was significantly (p<0.05) greater in the herbal extract supplements than in the control, in the order of licorice root, chinese pepper, cinnamon and obtusifolia. Methane proportions of the herbal extracts were significantly (p<0.05) higher than that of the control. Licorice root extract supplementation resulted in the lowest methane proportion at 3 hr fermentation. Proportion of hydrogen was significantly (p<0.05) higher in the herbal extract supplements than in the control at 12 hr fermentation. Compared to the control, ammonia concentration in the licorice root was significantly higher at 3 hr fermentation, but lower at 12 hr fermentation (p<0.05). Based on these results, supplementation of the herbal extracts used in this experiment resulted in increased cumulative gas production and stimulating methane production in vitro rumen fermentation.