• Title/Summary/Keyword: Rumen cellulolytic bacteria

Search Result 60, Processing Time 0.022 seconds

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

The Effect of Physically Effective Fiber and Soy Hull on the Ruminal Cellulolytic Bacteria Population and Milk Production of Dairy Cows

  • Valizadeh, R.;Behgar, M.;Mirzaee, M.;Naserian, A.A.;Vakili, A.R.;Ghovvati, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1325-1332
    • /
    • 2010
  • This study was conducted to evaluate the effects of the particle size (PS) of alfalfa hay (AH) and soybean hull (SH) on milk production of dairy cows and the population of major cellulolytic bacteria in the rumen. Eight lactating Holstein cows, averaging $590{\pm}33\;kg$ BW and $47{\pm}13$ days in milk (DIM), were assigned in a $4{\times}4$ Latin square design to a $2{\times}2$ factorial arrangement of treatments: alfalfa hay particle size (fine vs. coarse) combined with soy hull (zero or substituted as 50% of AH). The cows were fed diets formulated according to NRC (2001). Physically effective factor (pef) and physically effective fiber (peNDF) contents of diets increased by increasing AH particle size and inclusion of SH in the diets (p<0.01). Dry matter intake was not significantly affected by treatments but intake of peNDF was increased marginally by increasing the PS of AH (p = 0.08) and by SH inclusion (p<0.01) in the diets. Milk production was increased by feeding diets containing SH (p = 0.04), but it was not affected by the dietary PS. Milk fat content was increased by increasing AH particle size (p = 0.03) and decreased by SH substitution for a portion of AH (p<0.01). The numbers of total bacteria and cellulolytic species were not affected by PS of AH or by SH. F. succinogenes was the most abundant species in the rumen followed by R. albus and R. flavefaciens (p<0.01). This study showed that SH cannot replace the physically effective fiber in AH having either coarse or fine particle size. In diets containing SH, increasing of diet PS using coarse AH can maintain milk fat content similar to diets without SH. Particle size and peNDF content of diets did not affect the number of total or fibrolytic bacteria in the rumen.

Effect of Sugar-Beet Pulp Supplementation on Fiber Degradation of Grass Hay in the Rumen of Goats

  • Masuda, Y.;Kondo, S.;Shimojo, M.;Goto, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.186-188
    • /
    • 1999
  • This study was conducted to investigate the effects of four levels (0, 10, 20, 40 %) of sugar-beet pulp (SB pulp) supplementation to Italian ryegrass hay (IRG hay) on the fiber degradability of IRG hay in the rumen of goats. The following results were obtained: Degradabilities of DM, NDF, ADF and hemicellulose of IRG hay in the rumen increased significantly (p<0.05) by 10 % level supplementation of SB pulp to IRG hay. This was probably due to the increased numbers (p<0.05) of total viable bacteria, pectin-fermenting, xylan-fermenting and cellulolytic bacteria in the rumen in the increased supply of degradable pectic substances and hemicellulose at 10% level supplementation of SB pulp pectin. In 40% supplementation of SB pulp, ruminal pH was lowered by the fermentation of increased amount of molasses from SB pulp, resulting in the depression of growth of fiber fermenting bacteria and hence the decrease in degradabilities of cell wall fractions. It was suggested from this study that the sugar-beet pulp supplementation to forages at the level of 10% in the total diet increased fiber degradation of forage in the rumen of goats.

Effects of Surfactant Tween 80 on Forage Degradability and Microbial Growth on the In vitro Rumen Mixed and Pure Cultures

  • Goto, M.;Bae, H.;Lee, S.S.;Yahaya, M.S.;Karita, S.;Wanjae, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.672-676
    • /
    • 2003
  • Effect of a surfactant Tween 80 on the bacterial growth in the rumen was examined on the in vitro pure cultures of Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Prevotella ruminicola, Megasphaera elsidenni, Fibrobacta succinogenes, Ruminanococcus albus and Ruminococcus flavefaciens. Dry matter degradability (DMD), concentrations and compositions of volatile fatty acids (VFA), and the most probable number (MPN) of cellulolytic bacteria and total number of bacteria in the presence of Tween 80 were also examined on the in vitro rumen mixed culture either with barley grain or orchardgrass hay. The growth of S. bovis, S. ruminantium, B. fibrisolvens, P. ruminicola, M. elsidenni and F. succinogenes were significantly higher (p<0.05) at over 0.05% concentrations of Tween 80 than those of the control cultures, while was not changed with R. albus and R. flavefaciens. With rumen mixed culture the DMD of barley grain and orchardgrass hay was significantly higher (p<0.05) at a 0.2% concentration of Tween 80 than the control, being reflected in the significantly higher (p<0.05) VFA production (mmol $g^{-1}$DDM) with orchardgrass hay. The higher (p<0.05) ratio of propionate to acetate at a 0.2% concentration of Tween 80 was also observed with orchardgrass hay, showing a similar trend with barley grain. No changes in the total bacterial number and MPN of cellulolytic bacteria were observed.

Effects of Mixtures of Tween80 and Cellulolytic Enzymes on Nutrient Digestion and Cellulolytic Bacterial Adhesion

  • Hwang, Il Hwan;Lee, Chan Hee;Kim, Seon Woo;Sung, Ha Guyn;Lee, Se Young;Lee, Sung Sill;Hong, Hee Ok;Kwak, Yong-Chul;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1604-1609
    • /
    • 2008
  • A series of in vitro and in vivo experiments were conducted to investigate the effects of the mixture of Tween 80 and cellulolytic enzymes (xylanase and cellulase) on total tract nutrient digestibility and rumen cellulolytic bacterial adhesion rates in Holstein steers. Ground timothy hay sprayed with various levels of Tween 80 and cellulolytic enzymes was used as substrates in an in vitro experiment to find out the best combinations for DM degradation. The application level of 2.5% (v/w) Tween 80 and the combination of 5 U xylanase and 2.5 U cellulase per gram of ground timothy hay (DM basis) resulted in the highest in vitro dry matter degradation rate (p<0.05). Feeding the same timothy hay to Holstein steers also improved in vivo nutrient (DM, CP, CF, NDF and ADF) digesibilities compared to non-treated hay (p<0.05). Moreover, Tween 80 and enzyme combination treatment increased total ruminal VFA and concentrations of propionic acid and isovaleric acid with decreased acetate to propionate ratio (p<0.001). However, adhesion rates of Fibrobacter succinogenes and Ruminococcus flavefaciens determined by Real Time PCR were not influenced by the treatment while that of Ruminococcus albus was decreased (p<0.05). The present results indicate that a mixture of Tween 80 and cellulolytic enzymes can improve rumen environment and feed digestibility with variable influence on cellulolytic bacterial adhesion on feed.

The Role of Protozoa in Feed Digestion - Review -

  • Jouany, J.P.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.113-128
    • /
    • 1999
  • Protozoa can represent as half of the total rumen microbial biomass. Around 10 genera are generally present on the same time in the rumen. Based on nutritional aspects they can be divided in large entodiniomorphs, small entodiniomorphs and isotrichs. Their feeding behaviour and their enzymatic activities differ considerably. Many comparisons between defaunated and refaunated animals were carried out during the last two decades to explain the global role of protozoa at the ruminal or animal levels. It is now generally considered that a presence of an abundant protozoal population in the rumen has a negative effect on the amino acid (AA) supply to ruminants and contribute to generate more methane but, nevertheless, protozoa must not be considered as parasites. They are useful for numerous reasons. They stabilise rumen pH when animal are fed diets rich in available starch and decrease the redox potential of rumen digesta. Because cellulolytic bacteria are very sensitive to these two parameters, protozoa indirectly stimulate the bacterial cellulolytic activity and supply their own activity to the rumen microbial ecosystem. They could also supply some peptides in the rumen medium which can stimulate the growth of the rumen microbiota, but this aspect has never been considered in the past. Their high contribution to ammonia production has bad consequences on the urinary nitrogen excretion but means also that less dietary soluble nitrogen is necessary when protozoa are present. Changes in the molar percentages of VFA and gases from rumen fermentations are not so large that they could alter significantly the use of energy by animals. The answer of animals to elimination of protozoa (defaunation) depends on the balance between energy and protein needs of animals and the supply of nutrients supplied through the diet. Defaunation is useful in case of diets short in protein nitrogen but not limited in energy supply for animals having high needs of proteins.

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.

Recent Advances in Gut Microbiology and Their Possible Contribution to Animal Health and Production - A Review -

  • Kobayashi, Yasuo;Koike, Satoshi;Taguchi, Hidenori;Itabashi, Hisao;Kam, Dong K.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.877-884
    • /
    • 2004
  • Although gut microbial functions have been analyzed through cultivation of isolated microbes, molecular analysis without cultivation is becoming a popular approach in recent years. Gene cloning studies have partially revealed the mechanisms involved in fiber digestion of individual microbe. The molecular approach finally made it possible to analyze full genomes of the representative rumen cellulolytic bacteria Fibrobacter and Ruminococcus. The coming database may contain useful information such as regulation of gene expression relating to fiber digestion. Meanwhile, unculturable bacteria are still poorly characterized, even though they are main constituents of gut microbial ecosystem. The molecular analysis is essential to initiating the studies on these unculturable bacteria. The studies dealing with rumen and large intestine are revealing considerable complexity of the microbial ecosystems with many undescribed bacteria. These bacteria are being highlighted as possibly functional members contributing to feed digestion. Manipulation of gut bacteria and gut ecology for improving animal production is still at challenging stage. Bacteria newly introduced in the rumen, whether they are genetically modified or not, suffer from poor survival. In one of these attempts, Butyrivibrio fibrisolvens expressing a foreign dehalogenase was successfully established in sheep rumen to prevent fluoroacetate poisoning. This expands choice of forages in tropics, since many tropic plants are known to contain the toxic fluoroacetate. This example may promise the possible application of molecular breeding of gut bacteria to the host animals with significance in their health and nutrition. When inoculation strategies for such foreign bacteria are considered, it is obvious that we should have more detailed information of the gut microbial ecology.

Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.951-957
    • /
    • 2015
  • Four rumen fistulated swamp buffaloes were randomly assigned according to a $4{\times}4$ Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping;Meng, Qingxiang;Ren, Liping;Liu, Wei;Zhang, Xinzhuang;Huo, Yunlong;Zhou, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1433-1441
    • /
    • 2015
  • This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.