• Title/Summary/Keyword: Rumen Protected Lysine

Search Result 9, Processing Time 0.027 seconds

EFFECT OF SUPPLEMENTING RUMEN-PROTECTED LYSINE AND METHIONINE ON RUMINAL CHARACTERISTICS AND NUTRIENT DIGESTIBILITY IN SHEEP

  • Han, In K.;Ha, J.K.;Lee, S.S.;Ko, Y.G.;Lee, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.223-229
    • /
    • 1996
  • This experiment was conducted to investigate the protein sparing effect of rumen protected lysine(RPLys) and methionine hydroxyl analogue(MHA) in sheep. The treatments were $T_1$ (CP 15% + RPLys 0%), $T_2$ (CP 12% + RPLys 0%), $T_3$ (CP 12% + RPLys 0.4%) and $T_4$ (CP 12% + RPLys 0.4% + MHA 0.3%). Ruminal characteristics, in situ and in vitro digestibility and nitrogen retention rate were measured in sheep receiving different combinations of dietary supplement. The results are summarized as follows: 1. Ruminal pH and VFA concentrations were not affected by the treatments. Ruminal ammonia-N concentration was high in sheep fed diets $T_2$, $T_3$ and $T_4$ with the highest value in the $T_4$ treatment(p<0.05). 2. The digestibilities of dry matter and organic matter were not affected by the treatments. 3. Nitrogen losses through feces and urine were the highest with $T_1$ (p<0.05) and nitrogen retention rates of groups $T_1$, $T_2$, $T_3$ and $T_4$ were 18.6, 32.4, 35.5 and 27.5% of nitrogen intake, respectively, indicating that RPLys supplementation improved nitrogen retention in sheep.

EFFECT OF SUPPLEMENTING RUMEN-PROTECTED LYSINE ON GROWTH PERFORMANCE AND PLASMA AMINO ACID CONCENTRATIONS IN SHEEP

  • Han, In K.;Ha, J.K.;Lee, S.S.;Ko, Y.G.;Lee, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.309-313
    • /
    • 1996
  • This experiment was carried out to investigate the effect of rumen-protected lysine (RPLys) on growth rate, feed efficiency and plasma amino acid concentrations in sheep. RPLys was supplemented at the level of 0% ($T_1$), 0.2% ($T_2$) and 0.4% ($T_3$) of total DMI with 24 sheep in a 56 day feeding trial. The results are summarized as follows: 1. live weight gain of sheep in groups $T_1$, $T_2$ and $T_3$ was 219, 216 and 244 g/d, and was significantly (p < 0.05) higher for $T_3$ through the entire experiment. 2. Feed intake was not affected by RPLys supplementation. 3. The group fed $T_3$ had a significantly (p < 0.05) better feed efficiency than the groups fed $T_1$ and $T_3$. The response of $T_3$ was higher in growing period II of feeding low protein basal diet than in period I. 4. Plasma lysine concentrations tended to be higher with supplementing RPLys, but there were no differences between $T_2$ and $T_3$. 5. Supplementing RPLys in the diets increased plasma concentrations of arginine, asparagines, threonine, serine, valine and leucine compared with sheep receiving no RPLys. In contrast, plasma histidine was lower in sheep fed the supplementing RPLys than fed the diet $T_1$ with significant (p < 0.05) difference.

Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis

  • Agung Irawan;Ahmad Sofyan;Teguh Wahyono;Muhammad Ainsyar Harahap;Andi Febrisiantosa;Awistaros Angger Sakti;Hendra Herdian;Anuraga Jayanegara
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1666-1684
    • /
    • 2023
  • Objective: Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. Methods: A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. Results: In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. Conclusion: RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

Changes in growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers according to supplementation of rumen protected methionine and lysine

  • Ahn, Jun-Sang;Kwon, Eung-Gi;Shin, Jong-Suh;Kim, Min-Ji;Son, Gi-Hwal;Choi, Chang-Six;Lee, Chang-Woo;Park, Joong-Kook;Park, Byung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.671-682
    • /
    • 2019
  • This study was conducted to evaluate the effects of rumen-protected methionine and lysine (RPML) on the growth performance, carcass characteristics, and meat properties of Hanwoo steers. Fourteen late fattening steers were randomly assigned to either the control (commercial concentrate + rice straw) or the treatment (commercial concentrate + rice straw + 20 g of RPML/head/day) group. The average daily gain (ADG) and feed conversion ratio (FCR) were not different between the treatment and control group. The rib eye area was slightly but not significantly higher in the treatment group than in the control group. The back fat thickness decreased with the RPML supplementation, although not significantly, and the appearance of yield C grade was lower in the treatment group than in the control group. The marbling score was similar between the control and treatment groups. The supplementation of RPML had no effect on the physicochemical compositions, myoglobin values, Commission Internationale de $l^{\prime}{\acute{E}}clairage$ (CIE) color values, fatty acid composition, and thiobarbituric acid reactive substances (TBARS) values in the longissimus muscle. Thus, the supplementation of RPML does not any negative effects on the growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers.

EFFECTS OF THE SUPPLEMENTAL LEVEL OF PROTECTED LYSINE ON PERFORMANCES OF HOLSTEIN DAIRY COWS

  • Han, In K.;Choi, Y.J.;Ha, J.K.;Ko, Y.G.;Lee, H.S.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 1996
  • The objective of this study was to investigate the optimum level of the rumen protected lysine (RPLys) for early lactating Holstein dairy cow. This experiment was carried out with 16 Holstein dairy cows for 106 days and consisted of 4 treatments : $T_1$ (RPLys 0%), $T_2$ (RPLys 0.1%), $T_3$ (RPLys 0.2%) and $T_4$ (RPLys 0.3%). The results obtained are summarized as follows : 1. The daily intakes of feed were similar among treatments, but the digestibility of crude protein tended to increase 0.5-5.0% with increased level of RPLys and also the crude fiber digestibility increased (p < 0.05). 2. The daily weight gain for cows in $T_1$ was 253 g, which was lower than any other treatments (p < 0.05). The highest was 521 g in $T_3$. Also, the body condition score was changed from 3.22 at initial to 3.45 at final. The lowest increase in body condition score as 0.09 was obtained in control and the highest as 0.60 in $T_3$ (p < 0.01). 3. The total milk production of groups $T_2$, $T_3$ and $T_4$ were higher than $T_1$, as well as total protein, total fat and total solid yield. Especially in $T_4$ treatment group milk yield was higher than other treatments. The content of fat was higher in $T_2$ and $T_4$ compared to other treatments. Other components of milk were not significantly different (p > 0.05). The persistencies of lactation were increased in all RPLys treatments, especially, rate of reduction in milk yield was lowest in $T_4$ (p < 0.05). 4. The total amino acid content in the plasma, as well as plasma lysine content showed no consistent trend with treatments.

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Effects of Supplementation of Ruminally Protected Amino Acids on In vitro Ruminal Parameters and Milk Yield and Milk Composition of Dairy Cows in Mid-lactation (보호아미노산의 추가 공급이 반추위 발효성상 및 비유중기 착유우의 유량 및 유성분에 미치는 영향)

  • Lee, Jong-Min;Nam, In-Sik;Ahn, Jong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • This study was undertaken to investigate the effects of ruminally protected amino acids (Methionine and Lysine) on in vitro ruminal parameters, and in vivo milk yield and milk composition in mid-lactating cows. In the first in vitro experiment, there were no statistical significances between treatments in ruminal pH and dry matter digestibility during various incubation times. In the second in vivo experiment, milk yield decreased by 11.92% in control and 5.68% in the treatment respectively, but decrease rate of milk yield in the treatment was lower than control. Milk yields naturally decreased as time goes by since the DIMs(Days in milk) of the cows in experiment were in mid-lactation period. 4% FCM(Fat corrected milk) and milk protein yields also, respectively, decreased by 11.25% and 11.09% in control and 6.16% and 5.47% in the treatment as compared with the intial. Milk protein and milk fat production were higher in the treatment(0.90kg, 1.10kg) than those of control(0.66kg, 0.79kg). Milk fat content significantly increased with supplementing protected amino acids as compared to control(P<0.05). From the above results, protected amino acids were positively utilized in the performances of mid-lactating cows without inhibiting rumen fermentation. Further investigation is suggested for essential amino acid composition and intestinal digestion rate out of rumen bypass protein in dietary protein to be estimated.