• Title/Summary/Keyword: Rumen Microbial Growth

Search Result 74, Processing Time 0.03 seconds

Studies on Natural Plant Extracts for Methane Reduction in Ruminants (반추동물의 메탄감소를 위한 천연식물 추출물에 관한 연구)

  • Lee, Shin-Ja;Eom, Jun-Sik;Lee, Su-Kyoung;Lee, Il-Dong;Kim, Hyun-Sang;Kang, Han-Beyol;Lee, Sung-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.901-916
    • /
    • 2017
  • This study was conducted to evaluate natural plant extracts for methane gas reduction in ruminants. Rumen fluid was collected from cannulated Hanwoo cow ($450{\pm}30kg$) consuming 400 g/kg concentrate and 600 g/kg timothy. The 15 ml of mixture comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically into 50 ml serum bottles. Rumen fluid contents were collected and in vitro fermentation prepared control (timothy, 300 mg), ginseng, balloon flower, yucca plant, camellia, tea plant and ogapi extracts were added at the level of 5% against 300 mg of timothy as a substrate (v/w) and incubated for 3, 6, 9, 12, 24, 48, and 72 h. In vitro pH values range 6.55~7.41, this range include rumen titration. The dry matter digestibility was not differ between all treatments and control. Total gas emission was significantly higher (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Carbon dioxide emission was not differ all treatments on 9 h than in control and significantly higher (p<0.05) yucca plant, camellia and tea plant treatments on 12 h than control. Methane emission was not differ all treatments on 6 h than in control. The rumen microbial growth rate was significantly higher (p<0.05) in ginseng, balloon flower on 12 h and significantly higher (p<0.05) in ginseng, yucca plant, tea plant and ogapi treatments on 24 h than in control. Total VFA was significantly higher (p<0.05) in tea plant and ogapi treatments on 12 h than in control and significantly higher (p<0.05) in ginseng, balloon flower treatments on 48 h than in control. Acetic acid was significantly lower (p<0.05) in ginseng and balloon flower treatments on 24 h than in control. Propionic acid was significantly higher (p<0.05) in ginseng and balloon flower treatments on 48 h than in control. As a results, sixth natural plant extracts had no significant effect dry matter digestibility and negative on rumen fermentation, but not effect methane reduction.

Leucaena leucocephala and Gliricidia sepium Supplementation in Sheep Fed With Ammonia Treated Rice Straw: Effects on Intake, Digestibility, Microbial Protein Yield and Live-Weight Changes

  • Orden, E.A.;Abdulrazak, S.A.;Cruz, E.M.;Orden, M.E.M.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1659-1666
    • /
    • 2000
  • Two experiments were conducted to determine the effects of Leucaena leucocephala (leucaena) and Gliricidia sepium (gliricidia) supplementation on intake, digestion, outflow rates, microbial protein yield and live-weight changes in sheep fed with ammoniated rice straw (ARS). In experiment 1, three rumen cannulated Japanese Corriedale wether (mean body weight of 35.6 kg) in $3{\times}3$ Latin Square Design were used. Animals were fed ad libitum ARS alone, or supplemented with 200 g of either leucaena or gliricidia. In experiment 2, twenty-four growing native Philippine sheep with average body weight of $13.5{\pm}0.25kg$ were used in a completely randomized design (CRD) and offered similar diets to those of experiment 1. Supplementation increased total dry matter intake and nutrient digestibility except for fiber (p<0.05) without affecting ARS consumption. Nitrogen balance revealed that absorbed and retained N was significantly higher in leucaena and gliricidia. The significant improvement in N utilization and more digestible OM intake brought about by the inclusion of leucaena and gliricidia to ARS resulted in increased (p<0.05) microbial N yield. Efficiency of microbial N supply in supplemented group was not significantly different, but higher (p<0.05) than the 24.92 g N/kg DOMR for ARS group. Liquid outflow rate was 7.8 and 6.8 %/h, while the solid phase of rumen digesta was 4.4 and 3.8 %/h for the leucaena and gliricidia group respectively, which were significantly higher than 5.30 and 2.50 %/h in the control diet. The increase in total DMI resulted to higher (p<0.01) growth performance and efficient feed utilization. Average daily gain (ADG) was 19.3, 34.6 and 33.9 g/d for the ARS, leucaena and gliricidia respectively. It is therefore concluded that addition of leucaena and gliricidia to ARS in could increase nutrient intake and digestibility, subsequently improving N utilization and livestock performance.

Effects of Type and Level of Forage Supplementation on Voluntary Intake, Digestion, Rumen Microbial Protein Synthesis and Growth in Sheep Fed a Basal Diet of Rice Straw and Cassava

  • Premaratne, Sujatha;van Bruchem, J.;Chen, X.B.;Perera, H.G.D.;Oosting, S.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.692-696
    • /
    • 1998
  • An experiment was conducted with eight growing sheep (average initial weight 20.6 kg and average final weight 23.7 kg) in a $4{\times}4$ Latin square design to study the effect of type of forage supplementation to a basal diet of rice straw (ad libitum) and cassava (Manihot esculanta, approximately 9 g of dry matter $(DM).kg^{-0.75}{\cdot}day^{-1}$) on voluntary intake, digestion, rumen microbial protein synthesis and daily weight gain. Forages used were Leucaena (L, Leucaena leucocephala), Gliricidia (G, Gliricidia maculata) and Tithonia (T, Tithonia diversifolia, wild sunflower) at a DM supplementation level of approximately $13g.kg^{-0.75}.day^{-1}$. Organic matter intake was 40.4, 55.5, 55.0 and $54.9g{\cdot}kg.^{-0.75}{\cdot}day^{-1}$ for control (C, ad libitum straw and cassava), L, G and T. respectively, significantly lower for C than for the supplemented diets. Intake of supplementary forage had also a significantly positive effect on voluntary rice straw intake. All forage supplemented diets showed a significantly higher whole diet organic matter digestion than C ($488g{\cdot}kg^{-1}$), while T ($557g{\cdot}kg^{-1}$) differed significantly from L ($516g{\cdot}kg^{-1}$) but not from G ($526g{\cdot}kg^{-1}$). Daily weight gain was -1.7, 5.2, 5.4 and $4.7g{\cdot}kg^{-0.75}$, for C, L, G and T. respectively, significantly lower for C than for the forage-supplemented diets. Efficiency of microbial protein synthesis estimated from urinary excretion of purine derivatives was lower for C (3.8 g microbial N. (kg digestible organic matter intake $(DOMI))^{-1}$ than for the forage supplemented diets (11.3, 9.0 and 9.4 g microbial $N.(kg\;DOMI)^{-1}$ for L, G and T. respectively).

Effect of Graded Levels of Rice Mill Feed (RMF) Supplementation on Intake, Nutrient Digestibility, Microbial N Yield and Growth Rate of Native (Bos Indicus) Bulls Fed Rice Straw Alone

  • Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.445-454
    • /
    • 1997
  • Rice bran commonly available in Bangladesh is a mixture of rice hulls (60%), bran (35%) and polishing (5%), referred here as rice mill feed (RMF). Dose response effect of RMF supplementation to a straw diet including a zero level was measured on the intake, digestibility, nitrogen balance, microbial N yield and growth rate of growing native (Bos indicus) bulls. Twelve bulls of 33 months old and $272{\pm}31.5kg$ weight were randomly allocated to diets having 0 (T1), 1 (T2) and 2 (T3) kg RMF in addition to 200 g wheat bran, 200 g molasses, 60 g salt and 30 g oyestershe\l powder. Concentrate intake was 5.5, 19.2 and 29.5% of the dietary intake for the T1, T2 and T3 treatment respectively. RMF supplementation had no significant effect on the straw DM intake. However, with the increasing levels of RMF supplementation, total DM & digestible OM intake and the whole gut digestibilities of DM, OM, N & ADF increased but in deminishig return. Total microbial N yield estimated from the urinary purine excretion were 15.35, 26.56 and 38.44 g/d for the treatment T1, T2 and T3 respectively. Both the N intake and the N balance increased linearly in response to increasing level of RMF. Supplementation of RMF linearly increased the energy intake and dietary energy concentration. Growth rate in the T1, T2 and T3 treatments were 112, 125 and 250 g/d respctively. The basal N excretion and the maintenance energy requirement of the experimental animals were estimated to be 615 mg/kg $W^{0.75}/d$ and 447 kJ/kg $W^{0.75}/d$ respectively. The estimated efficiency on N utilization was 0.83 mg/mg of N intake ($r^2=0.997$) while the efficiency of metabolizable energy utilization for growth was 0.15. Since animal refused higher levels of RMF, inclusion up to 2 kg level (about 25% of the total DM intake) appears to have no depressing effect on the performances of animal. However, RMF itself fail to meet the critical nutrient need of the rumen microbes. Therefore response of supplementing RMF after correcting the critical nutrient deficiency need to be studied.

Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw

  • Kongphitee, Kanokwan;Sommart, Kritapon;Phonbumrung, Thamrongsak;Gunha, Thidarat;Suzuki, Tomoyuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1431-1441
    • /
    • 2018
  • Objective: This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Methods: Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight (BW) of $98.3{\pm}12.8kg$ were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300, and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. Results: The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p<0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p<0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was $399kJ/kg\;BW^{0.75}$, with an efficiency of metabolizable energy utilization for growth of 0.86. Conclusion: Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

Effect of Molasses or Rice Gruel Inclusion to Urea Supplemented Rice Straw on Its Intake, Nutrient Digestibilities, Microbial N Yield, N Balance and Growth Rate of Native (Bas indicus) Growing Bulls

  • Chowdhury, S.A.;Huque, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.145-151
    • /
    • 1998
  • The possibility of using rice gruel compared to that of the cane molasses as a source of readily fermentable energy for a urea supplemented straw diet has been studied. Twelve native growing bulls of $237{\pm}8.7kg $ live weight and months old were randomly allocated to three treatments fed solely rice straw enriched with : (1) 3% urea (US), (2) 3% urea + 15% molasses (UMS) and (3) 3% urea + 30% rice gruel (UGS). The feeding trial continued for sixty days. Organic matter (OM) intake was significantly (p < 0.05) higher in the UMS ( $64g/kg\;W^{0.75}/d$) followed by UGS ($53g/kg\;W^{0.75}/d$) and US ($49g/kg\;W^{0.75}/d$). Estimated (from digestible OM intake) metabolizable energy (ME) intake were 396, 348 and $301kJ/kg\;W^{0.75}/d$ for UMS, UGS and US respectively. The maintenance (i.e., no change in live weight) ME intake calculated to be $308{\pm}7.4kJ/kg\;W^{0.75}/d$. Urinary purine derivatives excretion was nonsignificantly higher in the UMS (51.73 mmol/d), followed by UGS (42.53 mmol/d) and US (35.26 mmol/d). The estimated microbial N (MN) yield were 21.10, 14.00 and 11.60 g/d for UMS, UGS and US respectively. For each MJ increase in ME intade, MN yield increased by $1.29{\pm}0.134g$. Observed live weight changes during the experimental period were 292, 125 and -19 g/d respectively for UMS, UGS and US. It was concluded that supplementation of readily fermentable N (urea) alone was not enough to optimize the rumen function and a source of readily fermentable energy was required. Rice gruel was less effective than molasses as fermentable energy source to remove a restriction on voluntary intake and provide less amino acids of microbial origin for absorption from the small intestine, Thus more substrate for protein synthesis and gluconeogenesis were available for growth in the molasses than the rice gruel supplemented animals. However, in situation where molasses is not available or costly, rice gruel does appear to have a place as readily fermentable energy source on a urea supplemented straw diet.

Analysis of Ruminal Dry Matter and Crude Protein Digestibility on Major Roughage, Wormwood and Green Tea (주요 조사료원과 쑥, 녹차의 반추위 건물 및 조단백질 소화율에 대한 분석)

  • Lee, Shin Ja;Lee, Su Kyoung;No, Jin Gu;Kim, Do Hyung;Lim, Jung Hwa;Moon, Yea Hwang;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.139-152
    • /
    • 2016
  • The comparative in vitro and in situ analysis were conducted to evaluate the rumen degradability and physical structure of domestic roughage as rice straw, timothy, alfalfa, wormwood and green tea. The feedstuffs incubated with rumen fluid and was used to determine gas production, microbial growth rate and pH changes in an in vitro experiment. The gas production was increased during incubation times and was significantly(p<0.05) lower in green tea than other feedstuffs. The microbial growth rate in the feedstuffs was increased during incubation times. However, microbial growth rate was significantly(p<0.05) lower in wormwood and green tea than other feedstuffs. Ruminal pH was decreased during incubation times, and timothy was the lowest, and rice straw was the highest among feedstuffs. The disappearance rate of dry matter(DM) and crude protein(CP) in all feedstuffs were increased during incubation times and green tea was the highest(p<0.05) compared with other feedstuffs. In effective degradability, when rumen out-flow rate was assigned to 4%, wormwood showed the highest in DM, and alfalfa was the highest in CP. Whereas, green tea was the highest in both in situ DM and CP degradability. Many cilia on the surface and stoma of wormwood and stoma in green tea were observed by scanning electron microscopy. Microbes breaked down the cilia at the beginning and then degraded the surface in wormwood. In case of green tea, microbes attached to stoma. Therefore, wormwood and green tea have a potential value as ruminal feed stuffs.

Effects of Supplementation of Mulberry (Morus alba) Foliage and Urea-rice Bran as Fermentable Energy and Protein Sources in Sheep Fed Urea-treated Rice Straw Based Diet

  • Yulistiani, Dwi;Jelan, Z.A.;Liang, J.B.;Yaakub, H.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.494-501
    • /
    • 2015
  • A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS). The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW) and the TRS was provided ad libitum. There were no differences (p>0.05) among the three treatment groups with respect to dry matter (DM) intake ($76.8{\pm}4.2g/kg\;BW^{0.75}$) and DM, organic matter (OM), and crude protein (CP) digestibility ($55.3{\pm}1.22$; $69.9{\pm}0.85$; $46.3{\pm}1.65%$ respectively for DM, OM, and CP). The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber) was significantly lower (p<0.05) for T3 (46.2 and 46.6 respectively) compared to T1 (55.8 and 53.7 respectively) and T2 (54.1 and 52.8 respectively). Nitrogen (N) intake by sheep on diet T3 was significantly (p<0.05) higher than sheep fed diet T1. However, N balance did not differ among the three diets ($3.0{\pm}0.32g/d$). In contrast, the rumen ammonia ($NH_3-N$) concentrations in sheep fed T2 and T3 were significantly (p<0.05) higher than in sheep fed T1. The $NH_3-N$ concentrations for all three diets were above the critical value required for optimum rumen microbial growth and synthesis. Total volatile fatty acid concentrations were highest (p<0.05) in T1 (120.3 mM), whilst the molar proportion of propionic acid was highest in T3 (36.9%). However, the microbial N supply in sheep fed T1 and T3 was similar but was significantly (p<0.05) higher than for sheep fed T2. It was concluded that mulberry foliage is a potential supplement of fermentable energy and protein for sheep fed TRS based diet. The suggested level of supplementation is 1.2% of BW or 32% of the total diet since it resulted in similar effects on the intake of DM, OM, and NDF, digestibility of DM, OM, and CP, N utilization and microbial supply when compared to rice bran and urea supplementation.

Studies on In situ and In vitro Degadabilities, Microbial Growth and Gas Production of Rice, Barley and Corn (쌀, 보리, 옥수수의 반추위내 In situ 및 In vitro 분해율, 미생물 성장과 Gas 발생량에 대한 연구)

  • 이상민;강태원;이신자;옥지운;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.699-708
    • /
    • 2006
  • Ground rice, barley and corn were fed separately to the ruminally cannulated Hanwoo (Korean native cattle) for comparing their in situ and in vitro degradabilities, microbial growth, pH and gas production. It has been found that nearly all the dry matter (DM) and organic matter (OM) in barley and rice disappeared during 24 hr suspension in the rumen, but those in corn were only reduced by around 67%. Water soluble DM and OM fractions(‘a’), ranked from highest to lowest was corn, then rice and finally barley, but the order was reversed for content ‘b’, degradable fraction during time ‘t’. Judging by the degradation parameter of ‘b’ fraction, degradation rates per hour of DM and OM for barley were 38.3% and 37.2% respectively, significantly higher than those for rice (7.7% and 5.6%) and corn (4.1% and 1.3%). In general, results obtained from in vitro degradability of DM and OM were lower than those from in situ trials, but the ranking order of degradability was in agreement between both trials. In particular, ground rice has relatively lower in vitro microbial growth than corn or barley, but exhibited higher gas production. In addition, in vitro microbial growth of ground rice increased with up to 12 hr of incubation period, thereafter experienced a decrease with extended incubation time. pH of in vitro solution of rice decreased following 9 hr of incubation but gas production increased rapidly during the same period. From the results of DM and OM degradabilities and pH changes of in vitro solution with incubation time, it is concluded that rice represents a good source of energy for stability of rumen fermentation.

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.