• Title/Summary/Keyword: Rumen Enzyme

Search Result 74, Processing Time 0.045 seconds

Cloning and Characterization of a Novel Carboxylesterase Gene from Cow Rumen Metagenomic Library (소 반추위 메타게놈에서 새로운 carboxylesterase 유전자 클로닝 및 유전산물의 특성)

  • Asraful Islam, Shah Md.;Kim, Min-Keun;Renukaradhya, K. Math;Srinivasa, Reddy R.N.;Kim, Eun-Jin;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1306-1313
    • /
    • 2010
  • The gene encoding esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est1R) was 2,465 bp in length, encoding a protein of 366 amino acid residues, and the molecular weight of the enzyme was 61,166 Da. Est1R of rumen cosmid library shared 5.9% amino acid identity with Est1R (P37967) of PNB carboxylesterase, 6.1% with Est1R (1EEAA) of acetylcholinesterase and 6.1% with Est1R (1H23A) of chain A. BlastP in NCBI database analysis of Est1R revealed that it was not homologous to previous known lipases and esterases. Est1R showed optimum activity at pH 7.0 and $40^{\circ}C$. On the other hand, the enzyme was found to be most active without organic solvent, followed by 95% activity with methanol, and the enzyme activity was highly affected by hexane (lost 51% activity). Therefore, the novel esterase gene est1R is likely obtainable from cow rumen metagenome and may be utilized for industrial purposes.

In Sacco Evaluation of Rumen Protein Degradation Characteristics and In vitro Enzyme Digestibility of Dry Roasted Whole Lupin Seeds (Lupinus albus)

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.358-365
    • /
    • 1999
  • The effects of dry roasting whole lupin seeds (lupinus albus, WLS) at 110, 130 or $150{^{\circ}C}$ for 15, 30 or 45 minutes on the in sacco rumen degradation characteristics, optimal heating conditions of time and temperature and in vitro enzyme digestibility were determined. Ruminant degradation characteristics (RDC) of crude protein (CP) of WLS were determined by in sacco technique in dairy cows. Measure ROC were soluble (S), undegradable (U), potentially degradable (D) fractions, lag time (TO) and rate of degradation (Kd) of insoluble but degradable fraction. Based on measured ROC, percentage bypass CP (%BCP) and bypass CP (BCP in g/kg, DM) were calculated. Degradability of CP was significantly reduced by dry roasting (p<0.001). The interaction of dry roasting temperature and time had significant effects on D (p<0.05), Kd (p<0.01), U (p<0.01), %BCP (p<0.001) and BCP (p<0.001) but not on S (p=0.923>0.05). With increasing time and temperature, S, D, Kd and U varied from 31.8%, 67.4%, 10.3%/h and 0.8% in the raw WLS (RWLS) to 27.1 %, 35.8%, 3.6%/h, 38.4% in $150{^{\circ}C}/45\;min$, respectively. All these effects resulted in increasing %BCP from 25.9 in RWLS to 61.0% in the $150{^{\circ}C}/45\;min$. Therefore BCP increased form 111.2 to 261.2 g/kg DM, respectively. Both %BCP and BCP at $150{^{\circ}C}/45\;min$ increased nearly 2.5 times over the RWLS. The effects of dry roasting on %BCP and BCP seemed to be linear up to the highest value tested. Although ROC had been altered by dry roasting, the In vitro perpsin-cellulase digestibility was generally unchanged. It was concluded that dry roasting was effective in shifting CP degradation from rumen to the lower gastrointestinal tract to potential reduce unnecessary N loss in the rumen. It might be of great value in successfully synchronizing the rhythms of release of nitrogen and energy in the rumen, thus achieving a more efficient fermentation of diets with high proportions of lignocellulosic resources. To determine the optimal dry roasting conditions, the digestibility of each treatment in the cows will be measured in the next trial using mobile bags technique.

Effect of Cellulose Degrading Bacteria Isolated from Wild and Domestic Ruminants on In vitro Dry Matter Digestibility of Feed and Enzyme Production

  • Sahu, N.P.;Kamra, D.N.;Paul, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.199-202
    • /
    • 2004
  • Cellulolytic bacterial strains have been isolated from the faeces of wild (blackbuck, Antilope cervicapra; nilgai, Baselophus tragocamelus chinkara, Gazella gazella spotted deer, Axis axis and hog deer, Cervus porcinus) and rumen liquor of domestic (sheep, Ovis aries) ruminants. Five best cellulose degrading bacterial isolates (Ruminococcus sp.) were used as microbial feed additive along with buffalo rumen liquor as inoculum to study their effect on digestibility of feed and enzyme production in in vitro conditions. The bacterial isolate from chinkara (CHI-2) showed the highest per cent apparent dry matter (DM) digestibility ($35.40{\pm}0.60$), true dry matter digestibility ($40.80{\pm}0.69$) and NDF ($26.38{\pm}0.83$) digestibility (p<0.05) compared to control ($32.73{\pm}0.56$, $36.64{\pm}0.71$ and $21.16{\pm}0.89$, respectively) and other isolates at 24 h of incubation with lignocellulosic feeds (wheat straw and wheat bran, 80:20). The same isolate also exhibited the highest activities of fibre degrading enzymes like carboxymethylcellulase, xylanase, ${\beta}$-glucosidase and acetyl esterase. The bacterial isolate from chinkara (Gazella gazella) appears to have a potential to be used as feed additive in the diet of ruminants for improving utilization of nutrients from lignocellulosic feeds.

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

Development of Appropriate Fibrolytic Enzyme Combination for Maize Stover and Its Effect on Rumen Fermentation in Sheep

  • Bhasker, T. Vijay;Nagalakshmi, D.;Rao, D. Srinivasa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • In vitro studies were undertaken to develop an appropriate fibrolytic enzymes cocktail comprising of cellulase, xylanase and ${\beta}$-D-glucanase for maize stover with an aim to increase its nutrient utilization in sheep. Cellulase and xylanase added individually to ground maize stover at an increasing dose rates (0, 100, 200, 400, 800, 1,600, 3,200, 6,400, 12,800, 25,600, 32,000, 38,400, and 44,800 IU/g DM), increased (p<0.01) the in vitro dry matter digestibility and in vitro sugar release. The doses selected for studying the combination effect of enzymes were 6,400 to 32,000 IU/g of cellulase and 12,800 to 44,800 IU/g of xylanase. At cellulase concentration of 6,400 IU/g, IVDMD % was higher (p<0.01) at higher xylanase doses (25,600 to 44,800 IU/g). While at cellulase doses (12,800 to 32,000 IU/g), IVDMD % was higher at lower xylanase doses (12,800 and 25,600 IU/g) compared to higher xylanase doses (32,000 to 44,800 IU/g). At cellulase concentration of the 6,400 to 32,000 IU/g, the amount of sugar released increased (p<0.01) with increasing levels of xylanase concentrations except for the concentration of 44,800 IU/g. No effect of ${\beta}$-D-glucanase (100 to 300 IU/g) was observed at lower cellulase-xylanase dose (cellulase-xylanase 12,800 to 12,800 IU/g). Based on the IVDMD, the enzyme combination cellulase-xylanase 12,800 to 12,800 IU/g was selected to study its effect on feed intake and rumen fermentation pattern, conducted on 12 rams (6 to 8 months; $20.34{\pm}2.369$ kg body weight) fed 50% maize stover based TMR. The total volatile fatty acids (p<0.01) and ammonia-N concentration was higher in enzyme supplemented group, while no effect was observed on dry matter intake, ruminal pH and total nitrogen concentration.

Effects of LCFA on the Gas Production, Cellulose Digestion and Cellulase Activities by the Rumen Anaerobic Fungus, Neocallimastix frontalis RE1

  • Lee, S.S.;Ha, J.K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1110-1117
    • /
    • 2001
  • Responses of the rumen fungus, Neocallimastix frontalis RE1, to long chain fatty acid (LCFA) were evaluated by measuring gas production, filter paper (FP) cellulose digestion and polysaccharidase enzyme activities. LCFA (stearic acid, $C_{18:0}$; oleic acid, $C_{18:1}$; linoleic acid, $C_{18:2}$ and linolenic acid, $C_{18:3}$) were emulsitied by ultrasonication under anaerobic condition, and added to the medium. When N frontalis RE1 was grown in culture with stearic, oleic and linoleic acid, the cumulative gas production, gas pool size, FP cellulose digestion and enzymes activities significantly (p<0.05) increased at some incubation times(especially, exponential phases of fungal growth, 48~120 h of incubation) relative to that for control cultures. However, the addition of linolenic acid strongly inhibited all of the investigated parameters up to 120 h incubation, but not after 168 and 216 h of incubation. These results indicated that stearic, oleic and linoleic acids tended to have great stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effects on the cellulolysis by the rumen fungus. These results are the first report of the effect of LCFAs on the ruminal fungi. Further research is needed to identify the mode of action of LCFAs on fungal strains and to verify whether or not ruminal fungi have ability to hydrate unsaturated LCFAs to saturated FAs. There was high correlation between cumulative in vitro gas production and fungal growth (94.78%), FP cellulose degradation (96.34%), CMCase activity(90.86%) or xylanase activity (87.67%). Thus measuring of cumulative gas production could be a useful tool for evaluating fungal growth and/or enzyme production by ruminal fungi.

Screening and Characterization of Lactate Dehydrogenase-producing Microorganism

  • Sung, Ha Guyn;Lee, Jae Heung;Shin, Hyung Tai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1411-1416
    • /
    • 2004
  • The objective of this work was to isolate a microorganism, able to produce high lactate dehydrogenase (LDH) activity, for use as a microbial feed additive. The LDH is an important enzyme for lactate conversion in the rumen, thereby possibly overcoming lactic acidosis owing to sudden increases of cereal in the diets of ruminants. In the present study, various bacterial strains were screened from a variety of environments. Among the isolated microorganisms, strain FFy 111-1 isolated from a Korean traditional fermented vegetable food called Kimchi showed the highest enzyme activity, along with retaining strong enzyme activity even in rumen fluid in vitro. Based on morphological and biochemical characteristics as well as compositions of cellular fatty acids plus API analyses, this strain was identified as Lactobacillus sp. The optimum temperature and pH for growth were found to be 30$^{\circ}C$ and pH 6.5, respectively. A maximum cell growth of 2.2 at $A_{650}$ together with LDH activity of 2.08 U per mL was achieved after 24 h of incubation. Initial characterization of FFy 111-1 suggested that it could be a potential candidate for use as a direct-fed microbial in the ruminant animals.

Influences of Surfactant Tween 80 on the Gas Production, Cellulose Digestion and Enzyme Activities by Mixed Rumen Microorganisms

  • Lee, Sung S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1151-1157
    • /
    • 2003
  • The surfactant Tween 80 was evaluated for its ability to influence cumulative gas production, cellulose digestion, and enzyme activities by mixed ruminal microorganisms grown on barley grain or Orchardgrass hay. The addition of Tween 80 at a level of 0.10% significantly (p<0.05) decreased the cumulative gas production rate from both barley grain or Orchardgrass hay substrates. However, 0.05% Tween 80 did not affect gas production rates compared to the control treatment. The addition of 0.05% Tween 80 to cultures growing on barley grain resulted in a significant increase in cellulase (90.01%), xylanase (90.73%) and amylase (487.25%) activities after 30 h incubation. Cultures utilizing Orchardgrass hay had a significant increase in cellulase (124.43%), xylanase (108.86%) and amylase (271.22%) activities after 72 h incubation. These increases in activities were also observed with cultures supplemented with 0.10% Tween 80 throughout all the incubation times tested. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some of key enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our data indicates potential uses of the surfactant Tween 80 as a feed additive for ruminant animals.

Effects of Synchronicity of Carbohydrate and Protein Degradation on Rumen Fermentation Characteristics and Microbial Protein Synthesis

  • Seo, J.K.;Kim, M.H.;Yang, J.Y.;Kim, H.J.;Lee, C.H.;Kim, K.H.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • A series of in vitro studies were carried out to determine i) the effects of enzyme and formaldehyde treatment on the degradation characteristics of carbohydrate and protein sources and on the synchronicity of these processes, and ii) the effects of synchronizing carbohydrate and protein supply on rumen fermentation and microbial protein synthesis (MPS) in in vitro experiments. Untreated corn (C) and enzyme-treated corn (EC) were combined with soy bean meal with (ES) and without (S) enzyme treatment or formaldehyde treatment (FS). Six experimental feeds (CS, CES, CFS, ECS, ECES and ECFS) with different synchrony indices were prepared. Highly synchronous diets had the greatest dry matter (DM) digestibility when untreated corn was used. However, the degree of synchronicity did not influence DM digestibility when EC was mixed with various soybean meals. At time points of 12 h and 24 h of incubation, EC-containing diets showed lower ammonia-N concentrations than those of C-containing diets, irrespective of the degree of synchronicity, indicating that more efficient utilization of ammonia-N for MPS was achieved by ruminal microorganisms when EC was offered as a carbohydrate source. Within C-containing treatments, the purine base concentration increased as the diets were more synchronized. This effect was not observed when EC was offered. There were significant effects on VFA concentration of both C and S treatments and their interactions. Similar to purine concentrations, total VFA production and individual VFA concentration in the groups containing EC as an energy source was higher than those of other groups (CS, CES and CFS). The results of the present study suggested that the availability of energy or the protein source are the most limiting factors for rumen fermentation and MPS, rather than the degree of synchronicity.