DOI QR코드

DOI QR Code

Cloning and Characterization of a Novel Carboxylesterase Gene from Cow Rumen Metagenomic Library

소 반추위 메타게놈에서 새로운 carboxylesterase 유전자 클로닝 및 유전산물의 특성

  • Asraful Islam, Shah Md. (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Renukaradhya, K. Math (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Srinivasa, Reddy R.N. (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Eun-Jin (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University) ;
  • Yun, Han-Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
  • Received : 2010.07.23
  • Accepted : 2010.08.10
  • Published : 2010.09.30

Abstract

The gene encoding esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est1R) was 2,465 bp in length, encoding a protein of 366 amino acid residues, and the molecular weight of the enzyme was 61,166 Da. Est1R of rumen cosmid library shared 5.9% amino acid identity with Est1R (P37967) of PNB carboxylesterase, 6.1% with Est1R (1EEAA) of acetylcholinesterase and 6.1% with Est1R (1H23A) of chain A. BlastP in NCBI database analysis of Est1R revealed that it was not homologous to previous known lipases and esterases. Est1R showed optimum activity at pH 7.0 and $40^{\circ}C$. On the other hand, the enzyme was found to be most active without organic solvent, followed by 95% activity with methanol, and the enzyme activity was highly affected by hexane (lost 51% activity). Therefore, the novel esterase gene est1R is likely obtainable from cow rumen metagenome and may be utilized for industrial purposes.

한우의 반추위에서 게놈 DNA를 분리하여 메타게놈 은행을 구축한 다음 carboxylesterase를 암호화하는 유전자를 클로닝 및 유전자를 선별하였다. 선별된 유전자의 DNA 염기서열 및 아미노산 서열을 분석하고 유전산물의 생화학적인 특성을 조사하였다. est1R 유전자는 2,465 bp로 366개의 아미노산 잔기를 가진 단백질을 암호화하였으며 이 단백질의 이론적인 분자량은 61,166 Da이었다. Est1R단백질은 PNB carboxylesterase (P37967), acetylcholinesterase (1EEAA) 및 chain A (1H23A)와 각각 5.9%, 6.1%, 6.1% 상동성을 가지고 있었다. 이러한 검색 결과 기존의 알려진 lipase 및esterase와의 상동성이 낮은 것으로 보아 새로운 그룹의 효소로 추정된다. Est1R효소의 최적 pH는 7.0 근방이었으며 최적 온도는 $40^{\circ}C$ 부근이었다. 한편 10% 유기용매를 함유한 기질의 효소활성측정에서 대조구에 비해 methanol은 95%의 상대적인 활성을 가진 반면에 hexane 용액에서는 그 활성이 반으로 감소하였다. 따라서 유기용매 농도의 작용성에 따라 이 효소의 산업적 이용성도 가능하리라 추정된다.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. Schleifer.1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  2. Arpigny, J. L. and K. E. Jacger. 1999. Bacterial lipolytic enzyme :classification and properties. Biochem. J. 343, 177-183. https://doi.org/10.1042/0264-6021:3430177
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cho, S. J. and H. D. Yun. 2005. Cloning of $\alpha$-amylase gene from unculturable bacterium using cow rumen metagenome. J. Life Sci. 15, 1013-1021. https://doi.org/10.5352/JLS.2005.15.6.1013
  5. Choi, Y. J., C. B. Miguez, and B. H. Lee. 2004. Charaterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Appl. Environ. Microbiol. 70, 3213-3221. https://doi.org/10.1128/AEM.70.6.3213-3221.2004
  6. Clarke, D. G. and J. C. Hawke. 1970. Studies on rumen metabolism. VI. In vitro hydrolysis of triglyceride and isolation of a lipolytic fraction. J. Sci. Food Agr. 21, 446-452. https://doi.org/10.1002/jsfa.2740210902
  7. Curtis, T. P. and W. T. Sloan. 2005. Exploring microbial diversity- a vast below. Science 309, 1331-1333. https://doi.org/10.1126/science.1118176
  8. Daniel, R. 2004. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15, 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
  9. Elend, C., C. Schmeisser, C. Leggewie, P. Babiak, J. D. Carballeira, H. L. Steele, J. L. Reymond, K. E. Jaeger, and W. R. Streit. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72, 3637-3645. https://doi.org/10.1128/AEM.72.5.3637-3645.2006
  10. Fay, J. P., K. D. Jakober, K. J. Cheng, and J. W. Costerton. 1990. Esterase activity of pure cultures of rumen bacteria as expressed by the hydrolysis of p-nitrophenylpalmitate. Can. J. Microbiol. 368, 585-589.
  11. Frederick, M. A., B. Roger, M. David, J. G. Seidmal, A. S. John, and S. Kevin. 1999. Short protocols in molecular biology 4, 2-13.
  12. Guo, P., L. Zhang, Z. Qi, R. Chen, and G. Jing. 2005. Expression in Escherichia coli, purification and characterization of Thermoanaerobacter tengcongensis ribosome recycling factor. J. Biochem. 138, 89-94. https://doi.org/10.1093/jb/mvi102
  13. Gutierrez, J., R. E. Davis, and I. L. Lindahl. 1959. Characteristics of saponin-utilizing bacteria from the rumen of cattle. Appl. Microbiol. 7, 304-308.
  14. Hardy, K. G. 1987. Purification of bacterial plasmid. 1-6, Plasmid IRL Press.
  15. Henderson, C. 1971. A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. J. Gen. Microbiol. 65, 81-89. https://doi.org/10.1099/00221287-65-1-81
  16. Hespell, R. B. and P. J. O'Bryan. 1992. Purification and characterization of an $\alpha$-l-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58, 1082-1088.
  17. Hill, F. D., J. H. Saylor, R. S. Allen, and N. L. Jacobson. 1960. In vitro lipolysis by rumen ingesta. J. Anim. Sci. 19, 1266-1270.
  18. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  19. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. van Heuvel, and O. Misset. 1994. Bacteria lipase. FEMS Microbiol. Rev. 15, 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  20. Khalmeyezer, V., I.Fischer, U. T. Bornscheuer, and J. Altenbuchner. 1999. Screening, nucleotides sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 65, 477-482.
  21. Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62, 66-71. https://doi.org/10.1271/bbb.62.66
  22. Lanz, W. W. and P. P. Williams. 1973. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens. J. Bacteriol. 113, 1170-1176.
  23. Lee, S. W., K. H. Won, H. K. Lim, J. C. Kim, G. J. Choi, and K. Y. Cho. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65, 720-726. https://doi.org/10.1007/s00253-004-1722-3
  24. Lidija, T. I. Z., D. G. C. Gordana, R. G. Kristina, M. V. Miroslav, and M. K. Ivanka. 2009. Enzymatic characterization of 30 kDa lipase from Pseudomonas aeruginosa ATCC 27853. J. Basic Microbiol. 49, 452-462. https://doi.org/10.1002/jobm.200800229
  25. Lorenz, P. and C. Schleper. 2002. Metagenome-a challenging source of enzyme discovery. J. Mol. Catal. B. 20, 13-19. https://doi.org/10.1016/S1381-1177(02)00147-9
  26. MacNeil, I. A., C. L. Tiong, C. Minor, P. R. August, T. H. Grossman, K. A. Loiacono, B. A. Lynch, T. Phillips, S. Narula, R. Sundaramoorthi, A. Tyler, T. Aldredge, H. Long, M. Gilman, D. Holt, and M. S. Osburne. 2001. Expression and isolation of antimicrobial small molecules from soil DNA Libraries. J. Mol. Microbiol. Biotechnol. 3, 301-308.
  27. Morris, E. J. and J. S. Bacon. 1976. Digestion of acetyl groups and cell-wall polysaccharides of grasses in the rumen. Proc. Nutr. Soc. 35, 94-95.
  28. Nandwani, R. and S. S. Dudeja. 2009. Molecular diversity of a native mesorhizobial population of nodulating chickpea (Cicer arietinum L.) in Indian soils. J. Basic Microbiol. 49, 463-470. https://doi.org/10.1002/jobm.200800355
  29. Ranjan, R., A. Grover, R. K. Kapardar, and R. Sharma. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commum. 335, 57-65. https://doi.org/10.1016/j.bbrc.2005.07.046
  30. Rhee, J. K., D. G. Ahn, Y. G. Kim, and J. W. Oh. 2005. New thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71, 817-825. https://doi.org/10.1128/AEM.71.2.817-825.2005
  31. Rondon, M. R., P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, and C. Minor. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  32. Sambrook J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  33. Schloss, P. D. and J. Handelsman. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14, 303-310. https://doi.org/10.1016/S0958-1669(03)00067-3
  34. Streit, W. R., R. Daniel, and K. E. Jaeger. 2004. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr. Opin. Biotechnol. 15, 285-290. https://doi.org/10.1016/j.copbio.2004.05.006
  35. Vazquez-Laslop, N., J. Lee, R. Hu, and A. A. Neyfakh. 2001. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacterili. 183, 2399-2404. https://doi.org/10.1128/JB.183.8.2399-2404.2001
  36. Williams, P. P. and R. L. Stolzenberg. 1972. Rumen bacterial degradation of benzo($\beta$)thien-4-yl methyl-carbamate (Mobam) and effect of Mobam on ruminal bacteria. Appl. Microbiol. 23, 754-749.
  37. Wolin, M. J. 1974. Metabolic interactions among intestinal microorganisms. Am. J. Clin. Nutr. 27, 1320-1328.
  38. Yun, H. D. and S. J. Cho. 2005. Cloning and characterization of cellulase gene (cel5A) from cow rumen metagenome. J. Agric. Life Sci. 39, 1-8.
  39. Yun, J., S. Kang, S. Park, H. Yoon, M. J. Kim, S. Heu, and S. Ryu. 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70, 7229-7235. https://doi.org/10.1128/AEM.70.12.7229-7235.2004

Cited by

  1. Cloning and Characterization of Cellulase Gene (cel5C) from Cow Rumen Metagenomic Library vol.22, pp.4, 2012, https://doi.org/10.5352/JLS.2012.22.4.437