• Title/Summary/Keyword: Rumen Content

Search Result 200, Processing Time 0.032 seconds

INORGANIC SELENIUM FOR SHEEP II. ITS INFLUENCE ON RUMEN BACTERIAL YIELD, VOLATILE FATTY ACID PRODUCTION AND TOTAL TRACT DIGESTION OF TIMOTHY HAY

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 1994
  • This study was conducted to determine the effect of inorganic selenium (Se) sources on rumen bacterial yield, ruminal volatile fatty acid (VFA) production and total tract digestion of timothy hay (Phlewm pratense L.) in Japanese Corriedale wethers. A $3{\times}3$ Latin square design was used with three wethers, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplementation as sodium selenate; and (3) sodium selenite at a rate 0.2 mg Se/kg dietary DM. The basal diet was timothy hay fed at 2% of body weight/d. Results indicated that there was slight decrease in rumen bacterial yield of animal supplement with inorganic Se, however, differences over the control were insignificant. It was found that Se content of ruminal fluid was negatively correlated (p < 0.05) to rumen bacterial yield. The various VFA contents and acetate and propionate ratio of the different ruminal fluid samples were insignificant across treatment means and the same manner was observed to the different digestibilities (DM, OM, CP, NDF, ADF and NDS). This study concludes that Se supplementation at 0.2 mg Se/kg dietary DM either from sodium selenate or sodium selenite could not significantly influence rumen bacterial functions.

Modeling Nutrient Supply to Ruminants: Frost-damaged Wheat vs. Normal Wheat

  • Yu, Peiqiang;Racz, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • The objectives of this study were to use the NRC-2001 model and DVE/OEB system to model potential nutrient supply to ruminants and to compare frost damaged (also called "frozen" wheat with normal wheat. Quantitative predictions were made in terms of: i) Truly absorbed rumen synthesized microbial protein in the small intestine; ii) Truly absorbed rumen undegraded feed protein in the small intestine; iii) Endogenous protein in the digestive tract; iv). Total truly absorbed protein in the small intestine; and v). Protein degraded balance. The overall yield losses of the frozen wheat were 24%. Results showed that using the DVE/OEB system to predict the potential nutrient supply, the frozen wheat had similar truly absorbed rumen synthesized microbial protein (65 vs. 66 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (39 vs. 53 g/kg DM; p<0.10) and had higher endogenous protein (14 vs. 9 g/kg DM; p<0.05). Total truly absorbed protein in the small intestine was significantly lower (89 vs. 110 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was similar and both were negative (-2 vs. -1 g/kg DM). Using the NRC-2001 model to predict the potential nutrient supply, the frozen wheat also had similar truly absorbed rumen synthesized microbial protein (average 56 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (35 vs. 48, g/kg DM; p<0.10) and had similar endogenous protein (average 4 g/kg DM; p>0.05). Total truly absorbed protein in the small intestine was significantly lower (95 vs. 108 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was not significantly different and both were negative (-16 vs. -19 g/kg DM). In conclusion, both models predict lower protein value and negative protein degraded balance in the frozen wheat. The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants by around 12 to 19%.

Dietary Transformation of Lipid in the Rumen Microbial Ecosystem

  • Kim, Eun Joong;Huws, Sharon A.;Lee, Michael R.F.;Scollan, Nigel D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1341-1350
    • /
    • 2009
  • Dietary lipids are rapidly hydrolysed and biohydrogenated in the rumen resulting in meat and milk characterised by a high content of saturated fatty acids and low polyunsaturated fatty acids (PUFA), which contributes to increases in the risk of diseases including cardiovascular disease and cancer. There has been considerable interest in altering the fatty acid composition of ruminant products with the overall aim of improving the long-term health of consumers. Metabolism of dietary lipids in the rumen (lipolysis and biohydrogenation) is a major critical control point in determining the fatty acid composition of ruminant lipids. Our understanding of the pathways involved and metabolically important intermediates has advanced considerably in recent years. Advances in molecular microbial technology based on 16S rRNA genes have helped to further advance our knowledge of the key organisms responsible for ruminal lipid transformation. Attention has focused on ruminal biohydrogenation of lipids in forages, plant oils and oilseeds, fish oil, marine algae and fat supplements as important dietary strategies which impact on fatty acid composition of ruminant lipids. Forages, such as grass and legumes, are rich in omega-3 PUFA and are a useful natural strategy in improving nutritional value of ruminant products. Specifically this review targets two key areas in relation to forages: i) what is the fate of the lipid-rich plant chloroplast in the rumen and ii) the role of the enzyme polyphenol oxidase in red clover as a natural plant-based protection mechanism of dietary lipids in the rumen. The review also addresses major pathways and micro-organisms involved in lipolysis and biohydrogenation.

EFFECTS OF HIGH BY-PRODUCT DIETS CONTAINING RICE BRAN AND BEET PULP ON THE SITE AND EXTENT OF DIGESTION AND MICROBIAL SYNTHESIS IN STEERS

  • Zhao, Y.;Taniguchi, K.;Obitsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.655-665
    • /
    • 1996
  • The effects of feeding rice bran and beet pulp mixtures on the site and extent of digestion and microbial synthesis in fattening steers were studied. Three Holstein steers fitted with ruminal, duodenal and ileal cannulas were fed four diets in a $4{\times}3$ Youden square design. The four diets consisted of 15% Italian ryegrass hay and 85% concentrate as a control diet which included 72% rolled barley, 20% rice bran plus 40% beet pulp, 30% rice bran plus 30% beet pulp or 40% rice bran plus 20% beet pulp. All diets provided 1.8 times digestible energy required for maintenance. The digestibility of fat in the small intestine (% of flow) showed an increase with rice bran content among the by-product diets. Digestibility of structural carbohydrate both in the rumen and the whole digestive tract decreased linearly with rice bran content. The digestibility of nonstructural carbohydrate was not affected by rice bran content, but that of nonstructural, nonstarch polysaccharides was higher in the rumen and lower in the large intestine for the by-product diets than for the control diet. A rice bran content of more than 30% in the by-product diets severely inhibits ruminal microbial synthesis and digestible energy intake in fattening steers.

Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter

  • Lee, Seong Shin;Paradhipta, Dimas Hand Vidya;Lee, Hyuk Jun;Joo, Young Ho;Noh, Hyeon Tak;Choi, Jeong Seok;Ji, Keum Bae;Kim, Sam Churl
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1029-1037
    • /
    • 2021
  • Objective: This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods: Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results: The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p<0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion: This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.

Effects of Replacing Mushroom By-product with Tofu By-product on the Chemical Composition, Microbes, and Rumen Fermentation Indices of Fermented Diets (두부비지의 버섯 폐배지 대체 수준이 발효사료의 영양소 함량, 미생물 성상 및 반추위 내 발효특성에 미치는 영향)

  • Joo, Young-Ho;Jeong, Hui-Han;Kim, Dong-Hyeon;Lee, Hyuk-Jun;Lee, Seong-Shin;Kim, Sang-Bum;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.651-659
    • /
    • 2017
  • This study aimed to estimate the effects of replacing Mushroom By-Product (MBP) with Tofu By-Product (TBP) on the chemical composition, microbes, and rumen fermentation indices of Fermented Diets (FDs). The basal diet was formulated using MBP, TBP, rice bran, molasses, and inoculants. The MBP in the basal diet was replaced with TBP at 0, 5, and 10% on Dry Matter (DM) basis for the experimental diets. The experimental diets were fermented at $39^{\circ}C$ for 144 h. Chemical composition, pH, microbes, and rumen fermentation indices of the FDs were analyzed. With increasing TBP replacement, crude protein content of FDs increased (L, P < 0.001), whereas crude ash content decreased (L, P = 0.002). Lactic acid bacteria and Bacillus subtilis contents in the TBP-replaced FDs were higher than those in the control (P < 0.05), whereas pH level and mold count were lower (P < 0.05). With increasing TBP replacement, in vitro rumen digestibility of DM (L, P = 0.053) and neutral detergent fiber (L, P = 0.024) increased, wheres rumen pH changed (P = 0.026) quadratically. Rumen total volatile fatty acid (L, P = 0.001) and iso-butyrate contents (Q, P = 0.003) increased with increasing TBP replacement. In conclusion, this study indicates that the replacement of MBP with TBP could improve the quality of FD.

Variation and Correlation of Shearing Force with Feed Nutritional Characteristics of Wheat Straw

  • Cui, X.M.;Yang, Z.B.;Yang, W.R.;Jiang, S.Z.;Zhang, G.G.;Liu, L.;Wu, B.R.;Wang, Z.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1466-1473
    • /
    • 2013
  • This experiment was conducted to study the variation laws and correlations of shearing force and feed characteristics including morphological characteristic, chemical composition and in situ degradability of wheat straw. Feasibility of evaluating the nutritional value of wheat straws with shearing force values was analyzed in this study. Six hundred wheat straw plants (Jimai 22) were randomly selected and placed in a cool and ventilated place. Samples were collected in the 1st, 15th, 30th, 45th, 60th d after harvest to measure shearing force, morphological characteristic, nutritional composition. Rumen degradation of dry matter (DM), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of wheat straws were determined by the nylon bags method. The results demonstrated that linear and quadratic effects of storage time on all the tested morphological characteristics were significantly correlative (p<0.01). As storage time goes on, all the tested nutrients and their rumen degradations of wheat straw was linearly (p<0.01) and quadratic (p<0.01) correlative except ADF content and rumen degradation of ADF. Significant correlations were determined in linear effect of shearing force on morphological characteristics (p<0.01), and linear density and diameter were a more sensitive predictor than stem thickness for shearing force. There were strong correlations between storage time and all the measured physical characteristics (shearing force, morphological characteristics and shearing force standardized by morphological characteristics) (p<0.01). Nutrition compositions were linearly correlative with shearing force and standardized shearing force (p<0.01). The linear correlation between rumen degradation of DM and NDF and shearing force and standardized shearing force were evident (p<0.01). In conclusion, shearing force, nutrition compositions and their rumen degradation of wheat straw were still dynamic with storage time after harvest. Correlation could be found between shearing force and nutritional characteristics of wheat straw. Nutrient content, morphological index and rumen degradation of DM and NDF could be predicted by changes in shearing force. Shearing force should be applied according to a standardized storage time when it is used to forecast the feed value of wheat straws.

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.

METHODS TO IMPROVE UTILIZATION OF RICE STRAW III. EFFECT OF UREA AMMONIA TREATMENT AND UREA MOLASSES BLOCKS SUPPLEMENTATION ON INTAKE, DIGESTIBILITY, RUMEN AND BLOOD PARAMETERS

  • Badurdeen, A.L.;Ibrahim, M.N.M.;Ranawana, S.S.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.363-372
    • /
    • 1994
  • In two separate experiments with crossbred bulls (Sahiwal $\times$ indigenous) the effect of access to a urea-molasses lickblock (MOL-U-MIN) on straw diets was studied. The animals were given either untreated (US) or urea treated (TS) rice straw with or without lickblock supplementation. In experiment 1, individual dry matter intake (DMI) and dry matter digestibility (DMD) were measured, while in experiment 2 in addition to the above rumen (pH, ammonia, minerals) and blood (protein, minerals and haemotological) parameters were also measured. With both experiments urea treatment did not effect DMI, but lickblock supplementation significantly (p < 0.05) increased DMI. The DMD values obtained in both experiments for TS were significantly (p < 0.05) higher than for US, but lickblock supplementation did not effect the DMD of either US or TS fed animals. Both urea treatment (6.97 vs 6.93) and lickblock supplementation (6.98 vs 6.92) significantly (p < 0.001) reduced the rumen pH. Urea treatment and lickblock supplementation increased the rumcn $NH_3-N$ concentration (mg/100 ml) from 8.7 to 11.9 and 9.2 to 11.4, respectively. Both US and TS diets fed with or without lickblock increased the molar ratio of Na : K in saliva. Phosphorus content in blood plasma was significantly (p < 0.01) increased due to lickblock supplementation, whereas the Fc content in blood was significantly increased (p < 0.01) by urea treatment. Haemoglobin content in blood ranged from 11.3 to 11.7 g/dl, and was not influenced by urea treatment or lickblock supplementation. Lickblock significantly reduced the number of red blood cells, but increased the mean corpuscular volume. It is concluded that feeding urea treated straw with proper mineral supplementation could be a more economical alternative to lickblock supplementation.

Effects of Temperature and Time for Heating and Filler Content on the Activities of Xylanase, Cellulase and Amylase in Slaughterhouse Rumen Content (가열온도, 가열시간 및 부형제의 첨가량이 도축 반추위 내용물의 자일란, 셀룰로오스 및 전분 분해효소 활성에 미치는 영향)

  • Won, Mi Young;Lee, Do Hyung;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study was conducted in order to develop slaughterhouse rumen content (SRC) as a potential feed additive. The moisture content of SRC can reach 80%, and therefore an appropriate dewatering process is required before it can be used. In this study, the effects of heating temperature, heating time, and filler content during the dewatering process on the activity of various enzymes in SRC were investigated. The Box-Behnken experimental design was employed, involving a total of 45 experimental runs, consisting of three variables (heating time, heating temperature, and filler content) with three levels per variable (12, 30 and 48 hr; 60, 75 and $90^{\circ}C$; 12, 22.5 and 33% for heating time, heating temperature, and filler content, respectively). For enzyme activities, xylanase, cellulase, and amylase were examined, and the results were subjected to an analysis of variance. Heating time, heating temperature and filler content had significant effects on the activity of each enzyme (p<0.05). Cellulase and amylase activities decreased (p<0.05) at elevated heating temperatures, whereas xylanase was reasonably stable around $90^{\circ}C$. The activities of all enzymes decreased (p<0.05) with increased heating time. Optimum filler contents for xylanase, cellulase, and amylase activities were 22.5, 12 and 33%, respectively. However, optimum conditions for all variables that simultaneously maximize the activity of all three enzymes could not be ascertained in this study. Nevertheless, the results from the current study can be useful as basic information for the development of SRC as a feed additive enriched with improved major enzymes for livestock feed digestion.