• Title/Summary/Keyword: Rumen Bacteria

Search Result 223, Processing Time 0.022 seconds

Molecular Analysis of Archaea, Bacteria and Eucarya Communities in the Rumen - Review-

  • White, B.A.;Cann, I.K.O.;Kocherginskaya, S.A.;Aminov, R.I.;Thill, L.A.;Mackie, R.I.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.129-138
    • /
    • 1999
  • If rumen bacteria can be manipulated to utilize nutrients (i.e., ammonia and plant cell wall carbohydrates) more completely and efficiently, the need for protein supplementation can be reduced or eliminated and the digestion of fiber in forage or agricultural residue-based diets could be enhanced. However, these approaches require a complete and accurate description of the rumen community, as well as methods for the rapid and accurate detection of microbial density, diversity, phylogeny, and gene expression. Molecular ecology techniques based on small subunit (SSU) rRNA sequences, nucleic acid probes and the polymerase chain reaction (PCR) can potentially provide a complete description of the microbial ecology of the rumen of ruminant animals. The development of these molecular tools will result in greater insights into community structure and activity of gut microbial ecosystems in relation to functional interactions between different bacteria, spatial and temporal relationships between different microorganisms and between microorganisms and reed panicles. Molecular approaches based on SSU rRNA serve to evaluate the presence of specific sequences in the community and provide a link between knowledge obtained from pure cultures and the microbial populations they represent in the rumen. The successful development and application of these methods promises to provide opportunities to link distribution and identity of gastrointestinal microbes in their natural environment with their genetic potential and in situ activities. The use of approaches for assessing pupulation dynamics as well as for assessing community functionality will result in an increased understanding and a complete description of the gastrointestinal communities of production animals fed under different dietary regimes, and lead to new strategies for improving animal growth.

The impact of diet on the composition and relative abundance of rumen microbes in goat

  • Liu, Kaizhen;Xu, Qin;Wang, Lizhi;Wang, Jiwen;Guo, Wei;Zhou, Meili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.531-537
    • /
    • 2017
  • Objective: This experiment was conducted to explore the impact of diet on the ruminal microbial community in goats. Methods: Twelve goats were divided into two groups and fed complete feed (CF) or all forage (AF) diet. The total microbial DNAs in the rumen liquid were extracted. The V4 region of microbial 16S rRNA genes was amplified and sequenced using high-throughput. Information of sequences was mainly analyzed by QIIME 1.8.0. Results: The results showed that Bacteroidetes and Firmicutes were the most predominant microbial phyla in the rumen of all goats. At genus level, the abundance of fiber-digesting bacteria such as Ruminococcus and Lachnospiracea incertae sedis was significantly higher in AF than that in CF, while the levels of fat-degrading bacterium Anaerovibrio and protein-degrading bacterium Pseudomonas were opposite. The core shared genera, Prevotella and Butyrivibrio were widespread in the rumen of goats and no significant difference was observed in relative abundance between groups. Conclusion: We concluded that the richness of fiber-, protein-, and fat-digesting bacteria was affected by diet and tended to increase with the rise of their corresponding substrate contents in the ration; some bacteria shared by all goats maintained stable despite the difference in the ration, and they might be essential in maintaining the normal function of rumen.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi;Hang, Suqin;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen

  • Cho, Soo-Jeong;Cho, Kye-Man;Shin, Eun-Chule;Lim, Woo-Jin;Hong, Su-Young;Choi, Byoung-Rock;Kang, Jung-Mi;Lee, Sun-Mi;Kim, Yong-Hee;Kim, Hoon;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.92-101
    • /
    • 2006
  • The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.

Effect of Levels of Supplementation of Concentrate Containing High Levels of Cassava Chip on Rumen Ecology, Microbial N Supply and Digestibility of Nutrients in Beef Cattle

  • Wanapat, M.;Khampa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The object of this study was to determine the influence of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial protein and digestibility of nutrients. Four, rumen fistulated crossbred beef steers with initial body weight of 400${\pm}$10 kg were randomly assigned according to a 4${\times}$4 Latin square design. The dietary treatments were concentrate cassava chip based offering at 0, 1, 2 and 3% BW with urea-treated rice straw fed ad libitum. It was found that ruminal pH was significantly decreased with increase of concentrate. Volatile fatty acids (VFA) concentration in the rumen was significantly different among treatments. In addition, a molar proportion of propionate was higher in supplemented groups at 2 and 3% BW (p<0.05), leading to significantly decreased acetate:propionate ratio. Furthermore, microbial N supply was significantly improved and was highest at 2% BW supplementation. The efficiency of rumen microbial-N synthesis based on organic matter (OM) truly digested in the rumen was highest in level of concentrate supplementation at 2% BW (80% of cassava chip in diets). Moreover, bacterial populations such as amylolytic bacteria was linearly increased, while cellulolytic bacteria was linearly decreased (p<0.01) when cattle received concentrate supplementation in all levels. The total protozoal counts were significantly increased, while fungal zoospores were dramatically decreased in cattle receiving increased levels of concentrate. In conclusion, cassava chip can be use as energy source at 80% in concentrate and supplementation of concentrate at 2% BW with urea-treated rice straw as roughage could improve rumen fermentation efficiency in beef cattle.

Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats

  • Singh, B.;Chaudhary, L.C.;Agarwal, N.;Kamra, D.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.810-817
    • /
    • 2011
  • A feeding trial was conducted to study the effect of tannin rich Pakar (Ficus infectoria) leaves on microbial profile, rumen fermentation and nutrient utilization in goats. Eight goats divided in two groups were fed pakar leaves (experimental group) and green oats (control group) as sole roughage source along with a fixed quantity of concentrate mixture for a period of 3 months. Two metabolic trials of six days duration were conducted after 30 and 90 days of experimental feeding. The dry matter intake was significantly higher (p<0.05) and digestibility's of DM, OM, CP, EE, NDF and ADF were reduced in experimental as compared with the control group. The TDN intake was similar (236.52 vs. 240.39 g/d) in both the groups. All the animals were in positive nitrogen balance. The concentration of ammonia nitrogen, TVFA, lactic acid and activities of xylanase and protease were reduced in pakar leaves fed goats. The rumen microbial profile as obtained by MPN technique showed no change in total bacterial population but total fungi and cellulolytic bacteria were reduced (p<0.05), whereas, tannin degrading/tolerant bacteria increased with the feeding of pakar leaves. Real time PCR data revealed a decrease in Ruminococcus flavefaciens, an increase in methanogens and no change in the Fibrobacter succinogenes population by feeding of pakar leaves.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.