• Title/Summary/Keyword: Rule-based detection algorithm

Search Result 93, Processing Time 0.026 seconds

A Study of Rule-based Fault Detection Algorithm in the HVAC System (규칙기반 고장진단 알고리즘의 실험적 연구)

  • Cho, Soo;Tae, Choon-Seob;Jang, Cheol-Yong;Yang, Hoon-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.241-246
    • /
    • 2005
  • The objective of this study is to develop a rule-based fault detection and diagnosis algorithm and an experimental verification using air handling unit. To develop an analytical algorithm which precisely detects a faulted component, energy equations at each control volume of AHU were applied. An experimental verification was conducted in the AHU at Green Building in KIER. In the experiment conducted in hot summer condition, the rule based FDD algorithm isolated a faulted sensor from HVAC components.

  • PDF

Design and Implementation of the Intrusion Detection Pattern Algorithm Based on Data Mining (데이터 마이닝 기반 침입탐지 패턴 알고리즘의 설계 및 구현)

  • Lee, Sang-Hoon;Soh, Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.717-726
    • /
    • 2003
  • In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.

A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection (네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝)

  • Tae Yeon Kim;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2023
  • Applying various association rule mining algorithms to the network intrusion detection task involves two critical issues: too large size of generated rule set which is hard to be utilized for IoT systems and hardness of control of false negative/positive rates. In this research, we propose an association rule mining algorithm based on the newly defined measures called coverage and exclusion. Coverage shows how frequently a pattern is discovered among the transactions of a class and exclusion does how frequently a pattern is not discovered in the transactions of the other classes. We compare our algorithm experimentally with the Apriori algorithm which is the most famous algorithm using the public dataset called KDDcup99. Compared to Apriori, the proposed algorithm reduces the resulting rule set size by up to 93.2 percent while keeping accuracy completely. The proposed algorithm also controls perfectly the false negative/positive rates of the generated rules by parameters. Therefore, network analysts can effectively apply the proposed association rule mining to the network intrusion detection task by solving two issues.

A Rule-Based Stereo Matching Algorithm to Obtain Three Dimesional Information (3차원 정보를 얻기 위한 Rule-Based Stereo Matching Algorithm)

  • 심영석;박성한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.151-163
    • /
    • 1990
  • In this paper, rule-based stereo algorithm is explored to obtain three dimensional information of an object. In the preprocessing of the stereo matching, feature points of stereo images must be less sensitive to noise and well linked. For this purpose, a new feature points detection algorithm is developed. For performing the stereo matching which is most important process of the stereo algorithm, the feature representation of feature points is first described. The feature representation is then used for a rule-based stereo algorithm to determine the correspondence between the input stereo images. Finally, the three dimensional information of the object is determined from the correspondence of the feature points of right and left images.

  • PDF

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

An Experimental Study on Fault Detection in the HVAC Simulator (공조 시뮬레이터를 이용한 고장진단 실험 연구)

  • Tae, Choon-Seob;Yang, Hoon-Cheul;Cho, Soo;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.807-813
    • /
    • 2006
  • The objective of this study is to develop a rule-based fault detection algorithm and an experimental verification using an artificial air handling unit. To develop an analytical algorithm which precisely detects a tendency of faulty component, energy equations at each control volume of AHU were applied. An experimental verification was conducted on the HVAC simulator. The rule based FDD algorithm isolated a faulted sensor from HVAC components in summer and winter conditions.

  • PDF

Moving object segmentation using Markov Random Field (마코프 랜덤 필드를 이용한 움직이는 객체의 분할에 관한 연구)

  • 정철곤;김중규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.221-230
    • /
    • 2002
  • This paper presents a new moving object segmentation algorithm using markov random field. The algorithm is based on signal detection theory. That is to say, motion of moving object is decided by binary decision rule, and false decision is corrected by markov random field model. The procedure toward complete segmentation consists of two steps: motion detection and object segmentation. First, motion detection decides the presence of motion on velocity vector by binary decision rule. And velocity vector is generated by optical flow. Second, object segmentation cancels noise by Bayes rule. Experimental results demonstrate the efficiency of the presented method.

ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining (연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2287-2297
    • /
    • 2007
  • The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.

Automatic Malware Detection Rule Generation and Verification System (악성코드 침입탐지시스템 탐지규칙 자동생성 및 검증시스템)

  • Kim, Sungho;Lee, Suchul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Service and users over the Internet are increasing rapidly. Cyber attacks are also increasing. As a result, information leakage and financial damage are occurring. Government, public agencies, and companies are using security systems that use signature-based detection rules to respond to known malicious codes. However, it takes a long time to generate and validate signature-based detection rules. In this paper, we propose and develop signature based detection rule generation and verification systems using the signature extraction scheme developed based on the LDA(latent Dirichlet allocation) algorithm and the traffic analysis technique. Experimental results show that detection rules are generated and verified much more quickly than before.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.