• Title/Summary/Keyword: Rule-Based Learning

Search Result 390, Processing Time 0.029 seconds

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

귀납법칙 학습과 개체위주 학습의 결합방법 (A Combined Method of Rule Induction Learning and Instance-Based Learning)

  • 이창환
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2299-2308
    • /
    • 1997
  • 대부분의 기계학습 방법들은 특정한 방법을 중심으로 연구되어 왔다. 하지만 두 가지 이상의 기계학습방법을 효과적으로 통합할 수 있는 방법에 대한 요구가 증가하며, 이에 따라 본 논문은 귀납법칙 (rule induction) 방법과 개체위주 학습방법 (instance-based learning)을 통합하는 시스템의 개발을 제시한다. 귀납법칙 단계에서는 엔트로피 함수의 일종인 Hellinger 변량을 사용하여 귀납법칙을 자동 생성하는 방법을 보이고, 개체위주 학습방법에서는 기존의 알고리즘의 단점을 보완한 새로운 개체위주 학습방법을 제시한다. 개발된 시스템은 여러 종류의 데이터에 의해 실험되었으며 다른 기계학습 방법과 비교되었다.

  • PDF

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

A Transformation-Based Learning Method on Generating Korean Standard Pronunciation

  • Kim, Dong-Sung;Roh, Chang-Hwa
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.241-248
    • /
    • 2007
  • In this paper, we propose a Transformation-Based Learning (TBL) method on generating the Korean standard pronunciation. Previous studies on the phonological processing have been focused on the phonological rule applications and the finite state automata (Johnson 1984; Kaplan and Kay 1994; Koskenniemi 1983; Bird 1995). In case of Korean computational phonology, some former researches have approached the phonological rule based pronunciation generation system (Lee et al. 2005; Lee 1998). This study suggests a corpus-based and data-oriented rule learning method on generating Korean standard pronunciation. In order to substituting rule-based generation with corpus-based one, an aligned corpus between an input and its pronunciation counterpart has been devised. We conducted an experiment on generating the standard pronunciation with the TBL algorithm, based on this aligned corpus.

  • PDF

Ontology Mapping and Rule-Based Inference for Learning Resource Integration

  • Jetinai, Kotchakorn;Arch-int, Ngamnij;Arch-int, Somjit
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.97-105
    • /
    • 2016
  • With the increasing demand for interoperability among existing learning resource systems in order to enable the sharing of learning resources, such resources need to be annotated with ontologies that use different metadata standards. These different ontologies must be reconciled through ontology mediation, so as to cope with information heterogeneity problems, such as semantic and structural conflicts. In this paper, we propose an ontology-mapping technique using Semantic Web Rule Language (SWRL) to generate semantic mapping rules that integrate learning resources from different systems and that cope with semantic and structural conflicts. Reasoning rules are defined to support a semantic search for heterogeneous learning resources, which are deduced by rule-based inference. Experimental results demonstrate that the proposed approach enables the integration of learning resources originating from multiple sources and helps users to search across heterogeneous learning resource systems.

유전학 기반 학습 환경하에서 분류 시스템의 성능 향상을 위한 엔-버전 학습법 (An N-version Learning Approach to Enhance the Prediction Accuracy of Classification Systems in Genetics-based Learning Environments)

  • 김영준;홍철의
    • 한국정보처리학회논문지
    • /
    • 제6권7호
    • /
    • pp.1841-1848
    • /
    • 1999
  • 델보는 주어진 사례의 집합으로부터 이들 사례들을 분류할 수 있는 베이지안 분류 규칙들로 이루어진 규칙 집합을 습득하는 유전학 기반 귀납적 학습 시스템이다. 규칙 집합의 습득과정에서 델보가 당면하게 되는 한 가지 문제점은 학습 과정이 최적의 규칙 집합이 아닌 지역 최적치를 습득하고 종료하는 경우가 가끔 발생한다는 것이다. 다른 하나의 문제점은 훈련 사례에 대한 경우와는 달리 새로운 평가 사례에 대해 분류 성능이 현저히 저하되는 규칙 집합을 습득하는 경우가 가끔 발생한다는 것이다. 본 논문에서는 이러한 문제점을 해결하여 보다 성능이 향상된 분류 시스템을 구축하기 위한 기법으로 엔-버전 시스템을 구축함으로써 분류 시스템의 전체적인 성능을 향상시키는 기법이다. 엔-버전 학습법의 구현을 위해 다수의 규칙 집합을 이용하여 최종 분류 결과를 도출해 내기 위한 기법과 습득된 규칙 합들로부터 분류 시스템을 구축하기 위한 최적의 규칙 집합의 조합을 찾기 위한 기법을 제시하고 다수의 사례 집합을 이용하여 엔-버전 학습법이 델보의 학습 환경에 미치는 영향을 평가하였다.

  • PDF

Solving Continuous Action/State Problem in Q-Learning Using Extended Rule Based Fuzzy Inference System

  • Kim, Min-Soeng;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.170-175
    • /
    • 2001
  • Q-learning is a kind of reinforcement learning where the agent solves the given task based on rewards received from the environment. Most research done in the field of Q-learning has focused on discrete domains, although the environment with which the agent must interact is generally continuous. Thus we need to devise some methods that enable Q-learning to be applicable to the continuous problem domain. In this paper, an extended fuzzy rule is proposed so that it can incorporate Q-learning. The interpolation technique, which is widely used in memory-based learning, is adopted to represent the appropriate Q value for current state and action pair in each extended fuzzy rule. The resulting structure based on the fuzzy inference system has the capability of solving the continuous state about the environment. The effectiveness of the proposed structure is shown through simulation on the cart-pole system.

  • PDF

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • 제15권2호
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

다중 로봇 제조 물류 작업을 위한 안전성과 효율성 학습 (Safety and Efficiency Learning for Multi-Robot Manufacturing Logistics Tasks)

  • 강민교;김인철
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.225-232
    • /
    • 2023
  • With the recent increase of multiple robots cooperating in smart manufacturing logistics environments, it has become very important how to predict the safety and efficiency of the individual tasks and dynamically assign them to the best one of available robots. In this paper, we propose a novel task policy learner based on deep relational reinforcement learning for predicting the safety and efficiency of tasks in a multi-robot manufacturing logistics environment. To reduce learning complexity, the proposed system divides the entire safety/efficiency prediction process into two distinct steps: the policy parameter estimation and the rule-based policy inference. It also makes full use of domain-specific knowledge for policy rule learning. Through experiments conducted with virtual dynamic manufacturing logistics environments using NVIDIA's Isaac simulator, we show the effectiveness and superiority of the proposed system.