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Solving Continuous Action/State Problem in Q-Learning
Using Extended Rule Based Fuzzy Inference Systems

Min-Soeng Kim and Ju-Jang Lee

Abstract: Q-learning is a kind of reinforcement leaming where the agent solves the given task based on rewards received from the
environment. Most research done in the field of Q-learning has focused on discrete domains, although the environment with which
the agent must interact is generally continuous. Thus we need to devise some methods that enable Q-learning to be applicable to the

continuous problem domain.

In this paper, an extended fuzzy rule is proposed so that it can incorporate Q-learning. The interpolation technique, which is widely
used in memory-based learning, is adopted to represent the appropriate Q value for current state and action pair in each extended
fuzzy rule. The resulting structure based on the fuzzy inference system has the capability of solving the continuous state and action
problem in Q-learning. Also it can generate fuzzy rules via interacting with the environment without a priori knowledge about the
environment. The effectiveness of the proposed structure is shown through simulation on the cart-pole system.
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L. Introduction

Q-learning is a kind of reinforcement learning where the
agent solves the given task based on rewards received from
the environment. In Q-learning[1], Q value which can be seen
as a quality value for a certain action in a certain state is gen-
erated and an agent can learn to select its proper action in each
state based on these Q values. However, most research done in
the field of reinforcement learning has focused on discrete
domains, although the environment with which the agent must
interact is usually continuous. Thus we need to devise some
methods that enable Q-learning to be applicable to the con-
tinuous problem domain. Moreover, from the control perspec-
tive, it is natural that the agent with continuous action can
perform better than the one with limited discrete actions.
There has been much research to make Q-learning deal with
the continuous state/action spaces.[2]-[4] In these methods,
however, the action selection method is based on a step search
in action space. That is, the Q value for all actions in the pos-
sible action range is calculated and the action of which the Q
value is the maximum is selected to be performed. The con-
tinuous property of action is dependent on the step size. More-
over, the sequence of generated actions does not change con-
tinuously, or smoothly. The continuity of action is important
from the practical view because the control input cannot
change rapidly by an actuator. Meanwhile, in the fuzzy infer-
ence system (FIS), both the continuous state and continuous
action can be described by a finite set of fuzzy variables. Thus,
the FIS is promising as an effective model to overcome the
limitations of conventional Q-learning.[5]-[7]

In this paper, the FIS and Q-learning are combined to re-
solve the continuous state and action problem in Q-learning. A
basic fuzzy rule is extended so that Q-learning can be incorpo-
rated and the interpolation technique, which is widely used in
memory-based learning, is adopted to represent the appropri-
ate Q value for current state and current action.

The remainder of this paper is organized as follows. In Sec-
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tion 2, the basic fuzzy rule and the conventional Q-learning
algorithm are briefly reviewed. In Section 3, the concept of
extended rule is addressed. Also Q-value representation
scheme using kernel function based interpolation is developed,
which enable the introduction of Q-learning in FIS. The pro-
posed structure and the learning algorithm for this structure
are shown in Section 4. In Section 5, the simulation results are
presented to show the effectiveness of the proposed methods.
The conclusion about the characteristics of proposed methods
is presented in Section 6.

IL. Preliminaries

1. Fuzzy inference system

Fuzzy Inference Systems (FIS) are expert systems based on
if-then rules, in which premises and conclusions are expressed
by means of linguistic terms. The most important features of
FIS are that they can incorporate experts' prior knowledge into
their parameter and that these parameters have clear physical
meaning. The FIS rule base is made of N different rules of the
following general form:

R;:if s isA{ and s, isAém 0

and s, is A/’-\,,, then ' is B

where 5=[s5; 5] RN s input state variables, A,’;1
( where m=1,---, M )and B’ are fuzzy memberships for
each i-th rule and characterized by linguistic label (e.g., small,
medium, etc ). These memberships are represented by a func-
tion py:s—[0,1] and up:s—[0,1l], respectively.

A FIS are based on the fuzzy rule base that consists of sev-
eral fuzzy rules. A FIS usually has a fuzzifier that translates
real-valued input into fuzzy values and a defuzzifier that trans-
lates fuzzy output values into real-valued output. Thus con-
tinuous states or actions can be described by a finite set of
fuzzy variables. Thus, a FIS seems to be an effective model to
overcome the limitations of conventional Q-learning, that is,
continuous state/action problem. By combining a FIS and Q-
learning, we can make Q-learning able to deal with continuous
states while generating continuous actions.
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2. Q-learning
In Q-learning, the agent selects an appropriate action for the
current state using the corresponding Q value of the current
state and action. The Q value is the immediate reward by exe-
cuting action from state plus the value of sum of expected
future reward following the optimal policy thereafter. The
basic Q-learning algorithm is as follows:
e Initialize all Q(s,a) values to 0 and observe the current
state s
e Do forever
— Select an action a and execute it
— Receive immediate reward r
— Observe new state s’
— Update ((s,a) value using the following equation

Q(s,a) « Q(s,a)+alr+ 7r[1’1ax Q(s',b) - Q(s,a)) 2)
e

- Replace s by s

A detailed explanation can be found in [8].

111. Extended rule

1. Extended rule

To incorporate Q-learning in FIS, an extended rule is pro-
posed in this paper. The proposed extended rule is different
from the basic fuzzy rule in that it has many candidates that
can be selected to be an actual consequent part of the rule and
has several characteristics as follows:

- For one antecedent part of each rule, several candidate
consequent parts(actions) exist.

- Each candidate action has its own Q value.

- A rule action is selected among candidate actions by using
policy and each candidate's Q-value.
This rule action becomes an actual consequent part of the rule
and final action is obtained by defuzzification.
This extended rule can be described as follows:

R :if s, is I and s, is L}, -
i 1 1 2 2 (3)

and s, is Ly, then a' is ﬁ(u'j,Qj-)

where s=[s;8;--s¢]€ RE s input state variables, L’;,,
( where m =1, ---, M ) is fuzzy memberships related to each
input state. a’ is a i-th rule action which corresponds to the
actual consequent part of i-th rule, R;. 7(-) is a policy that
selects a rule action from discrete action set 4;. 4; is a
collection of an action, u"}- (where j=L1---,p ), whichisa
candidate action for the consequent part of i-th rule. Every
Ll_i,- has its own Q value, Q'/ The superscript i represents
rule numberand /i=1,---, N .

In each rule, one of the candidate actions is selected based
on their Q value and the policy. Therefore the Q-learning
process must be incorporated. A Rule's candidate action is
currently selected action, among candidate consequent parts,
to be an actual consequent part. These selected rule actions
generate final action, a,, by defuzzification. The final action
is, however, generally different from each rule's rule action.
Because Q value is the functional value of state and action,
different value of action cannot be used in obtaining Q-value

for current state and the final action. That is, we must have Q-
value for the final action in each rule to obtain Q(s,a,) by
defuzzification. Thus some kinds of technique to obtain the Q
value corresponding to final action in each rule have to be
devised, the interpolation technique is used to obtain a Q value
for the final action in each rule in this paper.
2. Q value representation in the extended rule

Once the final action, a,, is determined from the fuzzy
rule base, the Q(s,a) value for a certain action a , which is not
included in the discrete action set, can be calculated using
interpolation technique. In other words, Q value for the final
action in R; can be obtained using the following equation:

» 1
ORnap)= 3 —

=Y K(upap)
h=1

K(ujap)Q; )

where K(-,) is a kernel function which determines the de-

gree of how each (u_’,-,Q}'i) pair in R; contributes to calcu-
lating Q(R;,a,) and has the following form:
: —(ay —ub)?

K('.a;) = exp(—L5-L—) (5)

' c

IV. Self-organizing fuzzy inference system

1. The structure of SOFIS-Q

In this section, the self-organizing fuzzy inference system
based on Q-learning(SOFIS-Q) is introduced. The term, self-
organizing, means that the consequent part of the fuzzy rule is
automatically selected from the discrete action set based on
the policy and on the Q value for each candidate action. The
whole structure is shown in Fig. 1. This structure performs the
fuzzy inference based on the fuzzy rule base that consists of
extended rules in (3). The inputs for the network are the states
of the environment or a plant. Qutputs are the final action and
the Q value for the final action and the current state (i.e.,
QO(s.a,) ). The SOFIS-Q network consists of total 5 layers.
Layer 1 to layer 3 achieves fuzzification in the input state that
resolves continuous state representation problem in Q-learning
Layer 4 to layer 5 generates continuous action by fuzzy infer-
ence and also generates the associated Q value for that in-
ferred action by fuzzy inference mixed with the interpolation
technique.

Tfinal action

t
Qe |

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1 o (L

Fig. 1. The structure of SOFIS-Q.
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e Layer 1

The function of the first layer is to receive the value of the
state and transmit this value to the next layer. Each node in
this layer corresponds to one input state variable
s;(i=1,--,k)

e Layer 2

This layer consists of several linguistic labels for each input
variable. Linguistic label L’;,, in (3) has its own membership
function that is denoted by ﬂi,,, () . Triangular and trapezoi-
dal membership functions are used in the paper. The output
value from layer 2 indicates a membership degree of the cur-
rent state.

e Layer 3

One link from a node in layer | to the node in layer 3 corre-
sponds to one antecedent part of FIS. That is, it represents the
‘if” part of each rule R; in (3). The value of each node in
layer 3 simply represents how much current state s belongs
to the rule R; and can be obtained by fuzzy and operator.
This value represents the firing strength of R; for the state
s and denoted as ap . ap is obtained using the following

equation.
Mo
ag (s)= T 4l (s) 6)
m=1
where the fuzzy and operator is implemented by using product
operation.
e Layer 4

Layer 4 corresponds to the ‘then’ part of each fuzzy rule.
Based on Q values and policy, one candidate action from the
discrete action set is selected as a rule action ' in (3) and
these rule actions from each rule are combined to generate the
final action.

ad = ﬂ(uj-,Qj-) (7

where ; is the number of candidate actions and ()
represents the policy used to select the action. In this paper,
& -greedy policy [8] is used. This policy selects an action of

which Q value is the maximum with the probability of (1-¢).

Besides the selection of the rule action, the Q value for the
final action is calculated by (4) after the final action is calcu-
lated in layer 5.

e Layer 5

In layer 5, the final action is obtained by using a weighted
sum of each rule action with their firing strength as follows.

N ;
af = Z I aRIa (8)
i=l Z aR,
b=t "
Once ay is obtained, value of O(R;,ar) is calculated for
each rule using (4). Then, O(s,as) value can be obtained
using the following equation.

N 1
Os.a)= T

i—1
1 Z aRh
h=1

ag O(R;.ar) )

2. Learning algorithm for SOFIS-Q

The update of Q-value for each rule in SOFIS-Q is per-
formed through the change in the Q value of each candidate
action for each rule. To speed up the leaming, a replacing
eligibility [9] is adopted. The eligibility is obtained using the
following equation.

ap K ui-,a - i
R (uj.ar) if Ri/”;' pair is selected.

€ =

N p X
Yag, X K(uj.ap)
k=1 h=1 ’

e = Aye; otherwise (10)
where A is an eligibility rate which is used to weight each
(rule,rule action)-pair according to their proximity to the
occurring time step from the current state.

The learning procedure is shown below:

1. Initialize all Q values of all candidate actions in each rule
to zero

2. Perceive the current state s, and generate final action

@y Y )

3. Calculate Q(Seyrroay, ) by (9) and calculate eligibility
traces by (10)

4. Perform a; , receive reward 7,,, and transition to
the next state s, .

5. Obtain Q(s,ey.ay, ) by (9) and calculate temporal er-
ror £.

)" Q(scurr’af )

&= Text + X Snext - curr
6. For each candidate action of every rule, update the Q

value as

P
D =Ly ¥ 2y

Jeurr

7. If trial is not ended, set a o =@y and goto step 2.

V. Simulation

1. Cart-pole balancing problem

The cart-pole balancing problem is concerned with how to
balance an upright pole. The pole has only one degree of free-
dom and the primary control task is to keep the pole vertically
balanced while keeping the cart within the rail track bounda-
ries. Four state variables are used in describing this system and
one variable represents the force applied to the cart. These are:

@ : the angle of the pole from upright position(radian);

0 :the angular velocity of the pole(radian/seconds);

x : the position of the cart's center (meters);

x :the velocity of the cart (meter/seconds);

J : force applied to the cart (Newton)
The model dynamics and corresponding parameters can be
found in [10]. Euler method is used for simulation using a
time step of 0.02s. The constraints on the variables are

o <127,

x| <2.4m,and |f|<10N .

It is assumed that the dynamics of the system is unknown to
the controller. The controller can be informed of only the val-
ues of the state variables and the reward signal at each time
step. The only available feedback for SOFIS-Q is failure sig-
nal when [0]>12° or |x|>2.4m . The reward signal given to
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the controller is as follows:

r:{—-l |0|>120 or‘x|>2.4m
0 otherwise

The simulations were done with various numbers of candi-
date actions. The parameter values used for Q-learning are as
follows: ¥ is0.9, a is03and A is0.7.

2. Simulation results

Figure 2 and Fig. 3 show learning curves for the case where
two candidate actions and five candidate actions, with zero
initial condition, are used, respectively. The curve consists of
ten consecutive runs where a run consists of several trials.
Each trial ends in two cases. First, if the pole has fallen or the
cart position exceeds the limits of the rail track. Second, if the
time step exceeds 10000. 10000-time step corresponds to 200
seconds in simulation time.

Finally, from Fig. 4 to Fig. 6, shown are the resulting trajec-
tories of €, x and f for learned controller with 5 dis-
crete candidate actions. These trajectories are selected as a
sample from many results. The proposed SOFIS-Q can learn
to achieve the given task only with the binary reward signal.

steps ;10000

9000 q
8000
7000 -
6000
- |

2000

3000
2000 b
1000 Zf 1

0 50 100 . 150
trials

Fig. 2. Learning curve with 2 candidate actions.

steps

7000 B
6000

5000

( 10 20 30 40 50 &0 70 80 90 O
trials

Fig. 3. Learning curve with 5 candidate actions.

Table 1. Average learning speed.

Average
Method reg
trial
Conventional Q-learning 1530
Fuzzy interpolation based Q-learning 926
Self-organizing modular neural network 500
The proposed method with 2 candidate 47
actions
The proposed method with 5 candidate 29
actions
e 3
(deg) -
;|
' steps
-:U 1000 2600 3000 3000  SG00 6000 7000 X000 90C0 10000
Fig. 4. Trajectory of pole angle.
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Fig. 5. Trajectory of cart position.
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Fig. 6. Generated control force.

3. Comparison study

There were few approaches that can resolve continuous
state and action problem simultancously with Q-learning.
Since the focus of this paper is on whether the agent can gen-
erate continuous action or not. Thus, we compare the results in
the view of exerted control effort. Fig. 8 shows the results
from the obtained data by the one-step search based approach,
in which the control is selected by increasing control value
with a finite step size and comparing the resulting Q value for
each control value. Although the approaches based on the one-
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step search might be different according to each method, it can
be said that, because selection of control action is based upon
the one-step search, the resulting control effort has similar
characteristics for the most algorithm. Thus we here adopt the
one-step search algorithm which uses the fuzzy network as an
approximator of Q(s,a) values and used the same learning
parameters and input space partition. From the Figures, we can
directly see the advantage of ability that can generate continu-
ous action. The control trajectory of Fig. 8 is very different
from that of Fig. 7. For the one-step search method, we can
make a smoother control by reducing the step size used in
searching. This reducing in step size, however, means more
computation time. Thus we must trade off between the conti-
nuity and the computation time with one-step search based
algorithm. More importantly, the resulting control by the one-
step search method is not truly continuous in that its value can
jump from one action value to another value discontinuously.
However, in SOFIS-Q, the generated control is inherently
continuous.

control

N)

steps

Fig. 7. Generated control force with the proposed method.

control [
(N)

U ] steps

Fig. 8. Generated control force with one-step search method.

VI. Conclusion
In this paper, the self-organizing fuzzy inference system by
Q-learning is proposed. The purpose of this SOFIS-Q is to
cope with continuous states while generating continuous ac-
tions in Q-learning. By methods based on fuzzification, the
continuous input state problem is easily resolved. By Using

defuzzification, the continuous action problem is also resolved.

By the extended rule and the interpolation technique, the
SOFIS-Q behaves as a fuzzy inference system while approxi-
mating the Q(s.a) values. Several simulations for a pole-
balancing problem were conducted to show the effectiveness
of the proposed structure. To show the advantage of the con-
tinuous action, the comparison with the one step search based
method was shown and the learning speed was compared. By
incorporating the fuzzy inference system with Q-learning,
without the model and knowledge about the plant, the SOFIS-

Q can adjust descendant part of a FIS automatically.
In SOFIS-Q, there are several candidate actions in each

rule, but what number is the optimal one for the problem can
not be determined. There should be some pruning or growing
methods that automatically increase or decrease the number of
candidate actions. Similarly where to locate the candidate
action in action space can be a problem according to the given
task. Thus research on self-locating the candidate action
should be made.
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