• Title/Summary/Keyword: Rule table

Search Result 175, Processing Time 0.023 seconds

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Development of Needs Extraction Algorithm Fitting for Individuals in Care Management for the Elderly in Home (재가노인 사례관리의 욕구사정 정확도 향상을 위한 욕구추출 알고리즘 개발 - 데이터 마이닝 분석기법을 활용하여 -)

  • Kim, Young-Sook;Jung, Kook-In;Park, So-Rah
    • Korean Journal of Social Welfare
    • /
    • v.60 no.1
    • /
    • pp.187-209
    • /
    • 2008
  • The authors developed 28 needs assessment tools for integrated assessment centered on needs, which is the core element in care management for the elderly in home. Also, the authors collected the assessment data of 676 elderly persons in home from 120 centers under the Korea Association of Senior Welfare Centers by using the needs assessment tools, and finally developed needs extraction algorithm through decision tree analysis in data mining to identify their actual needs and provide social welfare service suitable for such needs. The needs extraction algorithm for 28 needs of the elderly in home are summarized in

    . The Need No. 8 "Having need of help in going out" of the decision-making model, for example, was divided into 80.3% of asking for help and 11.4% not asking for help with Appeal No. 23 as a major variable. The need increased by 87.9% when the elderly appealed for help to go out and they had a caregiver but decreased by 47.4% when they had no caregiver. When the elderly asked for help in going out, they had a caregiver, and they needed complete help in cleaning, their need of help in going out was shown as 94.2%. However, seen from their answer that they needed complete help in bathing of ADL even if they did not ask for help in going out, it was found that the need of help in going out sharply increased from 11.4% to 80.0%. On the other hand, when they needed partial help or self-supported in bathing, the potential for them to be classified as asking for help in going out was shown to be low as 7.7%. In the said decision-making model, the number of cases for parent node and child node was designated as 50 and 25, respectively, with level 5 of the maximum tree depth as stopping rule. By this, it was shown that their decision-making was found to be effective as 182.13% for the need "Having need of help in going out". The algorithm presented in this study can be useful as systematic and scientific fundamental data in assessment of needs of the elderly in home.

  • PDF
  • Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

    • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
      • Journal of radiological science and technology
      • /
      • v.32 no.4
      • /
      • pp.361-370
      • /
      • 2009
    • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

    • PDF

    A Study on Growth Acceleration in Korean as Indirected by the Maximum Growth Age in Body Height (한국인(韓國人) 신장(身長)의 최대발육연령(最大發育年齡)으로 본 발육촉진현상(發育促進現象)의 추이(推移)에 관(關)한 연구(硏究))

    • Shin, Hyung-Gyun;Park, Soon-Young;Park, Yang-Won
      • Journal of Preventive Medicine and Public Health
      • /
      • v.17 no.1
      • /
      • pp.173-192
      • /
      • 1984
    • On the basis of the study intended to research by crosssectional study keeps pace with semilongitudinal study the growthaccelerating phenomena that Maximum Growth age in teenager's body-height. By the random sampling method, the subject of study are 12659 persons(male; 6355, female; 6304) that they are from 7 ages to 17 ages in the whole country including the rural community. The measurement period passed three month days, the statistical data became electronic data processing system with computer. The other side, body-height and MGA of Koreans who had been for during the period from 1925 to 1966 proved transition of the growth-accelerating phenomena by research data reported between 1913 and 1983. The results are as follows; 1. The Growth and Development-Value of Body-height An age bracket the growth and development-value of body-height were, respectively, male is $123.88{\pm}5.05cm$ and female is $123.29{\pm}5.54cm$ for 7 ages group. these indices increased with age. the top-value reach, respectively. $169.08{\pm}5.62cm$ and $157.57{\pm}6.13cm$. The intersecting ages of male and female were the age $8.5{\sim}12.5$, during these periods, female excelled male but after these periods, male excelled female again. In case of body-height, MGA's are 7.0cm for male between 12 and 13 ages, and 7.01cm for female between 8 and 9 ages. As a rule, body-height of male excelled female but intersection phenomena of male and female appeared between 8.5 and 12.5 ages. By reginal groups, it is most prevailing is Seoul, and medium size cities and rural community rome in order. By regional groups, intersection phenomena of male and female are. a region of Seoul; $$8.5{\sim}11.5$$ ages a region of Daejeon; $$7.5{\sim}9.5$$ ages rural community; $$11.5{\sim}14.5$$ ages the whole country's average; $$8.5{\sim}12.5$$ ages By regional groups, the rate of maximum increase in a year are a region of Seoul; male is 7.23cm as 13 ages female is 7.65cm as 9 ages. a region of Daejeon; male is 7.85cm as 11 ages. female is 8.39cm as 9 ages. rural community; male is 7.65cm as 14 ages. female is 6.25cm as 12 ages. the whole country's average; male is 7.0cm as 13 ages. female is 7.01 as 9 ages. 2. Maximum Growth Age (M.G.A.) By reginal groups, maximum Growth Age's are as below in a region of Seoul, MGA's are 12.63 for male and 9.01 for female, which shows that MGA for female appears about 3.5 years earlier than that for male. In a region of Daejeon, MGA's are 9.20 for male and 8.93 for female, which. show that they are all much the same in M.G.A. In rural community, MGA's are 14.00 for male and 11.89 for female, which shows that MGA for female apperars about 2 years earlier than that for male. In the whole average, MGA's are 13.01 for male and 8.97 for femal, which shows that for female appears about 4 years earlier than that for male. For boy, M.G.A. shows fastest-growing in Daejeon, and Seoul and rural commonly come in order. For girl, It shows equal growth in Seoul and Daejeon, rural community comes later. 3. The M.G.A's in body height of male are respectively the age 15.02 in 1913, 14.23 in 1956, 13.86 in 1967, 13.62 in 1975, and 12.82 in 1981, while those of female are the age 12.0 in 1940, 11.52 in 1965, 9.53 in 1975, and 11.16 in 1980; these data show that the MGA of the Koreans has been getting younger. 4. The equation of linear regression of all the MGA's in body height are as follow; Male: Y(M.G.A)=$-0.020{\times}$ (the year)+15.19: female:Y(MGA)=$-0.028{\times}$(the year)+13.2549. 5. The corelation of all the MGA's in body height are as below; male; r=-0.329 female;r=-0.252 6. From the transition of the growth-accelating phenomena in 1980 we can capture the fact that the MGA's has been getting younger by 0.2 year per 10 years. 7. The MGA's in bodyheight are shown in table 4... 8. The future growth-accelating phenomena in body height are expected to show the similar tendency like that of the past, in 1910's but it should by more precisely reviewed after investigating the phenomena of the years directly ahead.

    • PDF

    Japan's excitement over the discovery of Gyeongju Geumgwanchong (Gold Crown Tomb) seen through high school textbooks published in 1922 during Japanese colonial period of Joseon (Korea) - Newly Excavated Artifacts of Gyeongju (濱田耕作: Kosaku Hamada) - (1922년 발행 고등보통학교 교과서를 통해 본 경주 금관총 발견에 따른 일본의 반응 - 경주의 신발굴품(濱田耕作: 하마다 코사쿠) -)

    • YOO, Woo Sik
      • Korean Journal of Heritage: History & Science
      • /
      • v.55 no.1
      • /
      • pp.199-222
      • /
      • 2022
    • It has been 100 years since the excavation of Geumgwanchong (Gold Crown Tomb), a tomb that was accidentally discovered in Noseo-ri, Gyeongju at the end of September 1921 during Japanese colonial rule. Although it is known for its discovery, not only in the Korean Peninsula but also in Asia and beyond, the excavation report was published in Japanese and English by the Government-General of Korea in 1924 and 1928, three years after the excavation. TOMB "KINKANTSUKA" or THE GOLD CROWN TOMB at KEISHU, AND ITS TREASURES) was published as a series of books and picture books. The excavation report was prepared by Kosaku Hamada (濱田耕作), who was a member of the Ruins Investigation Committee of the Japanese Government-General of Korea (later became the President of Kyoto Imperial University, Kyoto, Japan), and Sueji Umehara (梅原末治), who was commissioned to investigate the remains of the Japanese Government-General of Korea. In this paper, the preface was written in July 1922, about half a year after the excavation of tombs, which was much earlier than the official reports, in the 'Korean and Chinese reading book (稿本 高等朝鮮語及漢文讀本 巻五)' by Hamada Kosaku (濱田耕作) for high school students in Korea, which was titled 'New Excavated Artifacts in Gyeongju (慶州의 新發掘品)' with a subtitle '絶大의 發見', a slightly awkward expression in Korean, but it means 'a very big discovery'. The meaning has been introduced as a single unit, emphasizing its significance in terms of the achievements of the excavation of Geumgwanchong, academic and archaeological discoveries, and cultural history in Korean language rather than Japanese language. Since the manuscript was written immediately after the excavation, the excitement as an archaeological researcher at the time of the excavation and expectations for future research can be read as it is. In this paper, I would like to introduce the voice of the excited field leader of the Japanese Government-General of Korea after the excavation of Geumgwanchong in 2022, the 100th anniversary of the writing. In addition, the process from the discovery of the tomb to the preparation of the report was summarized in one chronological table to make it easier to understand the series of flows.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.