• Title/Summary/Keyword: Rule based solution

Search Result 185, Processing Time 0.021 seconds

CONDENSED CRAMER RULE FOR COMPUTING A KIND OF RESTRICTED MATRIX EQUATION

  • Gu, Chao;Xu, Zhaoliang
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1011-1020
    • /
    • 2008
  • The problem of finding Cramer rule for solutions of some restricted linear equation Ax = b has been widely discussed. Recently Wang and Qiao consider the following more general problem AXB = D, $R(X){\subset}T$, $N(X){\supset}\tilde{S}$. They present the solution of above general restricted matrix equation by using generalized inverses and give an explicit expression for the elements of the solution matrix for the matrix equation. In this paper we re-consider the restricted matrix equation and give an equivalent matrix equation to it. Through the equivalent matrix equation, we derive condensed Cramer rule for above restricted matrix equation. As an application, condensed determinantal expressions for $A_{T,S}^{(2)}$ A and $AA_{T,S}^{(2)}$ are established. Based on above results, we present a method for computing the solution of a kind of restricted matrix equation.

  • PDF

Combining Multi-Criteria Analysis with CBR for Medical Decision Support

  • Abdelhak, Mansoul;Baghdad, Atmani
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1496-1515
    • /
    • 2017
  • One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.

Design and Implementation of Rule-based Mask Layout Transformation System (규칙에 기초한 마스크 레이아웃 변환 시스템의 설계 및 구현)

  • 이재황;전주식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.46-58
    • /
    • 1993
  • Owing to the nature of locality in mask layouts, it appears that most mask layout problems can be solved by transforming a part of the given mask layout into a better layout segment continuously toward a global suboptimal solution. This notion of local transformation addresses major weak points of existing mask layout processing systems, which lack both extensibility and unifiability. This paper attempts to elaborate upon developing a new rule-based mask layout transformation system wherein most of the mask layout problems can be solved under the unified framework of local mask layout transformation. The rule-based mask layout transformation system is applicable to various mask layout problems such as net extraction, mask layout compaction, mask layout editing, and design rule checking. The experimental results show that the rule-based expert system approach is an efficient means of solving those mask layout problems, and thus confronting major drawbacks of existing layout processing systems.

  • PDF

Design of a Rule Based Controller using Genetic Programming and Its Application to Fuzzy Logic Controller (유전 프로그래밍을 이용한 규칙 기반 제어기의 설계와 퍼지로직 제어기로의 응용)

  • 정일권;이주장
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.624-629
    • /
    • 1998
  • Evolutionary computation techniques can solve search problems using simulated evolution based on the ‘survival of the fittest’. Recently, the genetic programming (GP) which evolves computer programs using the genetic algorithm was introduced. In this paper, the genetic programming technique is used in order to design a rule based controller consisting of condition-action rules for an unknown system. No a priori knowledge about the structure of the controller is needed. Representation of a solution, functions and terminals in GP are analyzed, and a method of constructing a fuzzy logic controller using the obtained rule based controller is described. A simulation example using a nonlinear system shows the validity and efficiency of the proposed method.

  • PDF

Accommodation Rule Based on Navigation Accuracy for Double Faults in Redundant Inertial Sensor Systems

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.329-336
    • /
    • 2007
  • This paper considers a fault accommodation problem for inertial navigation systems (INS) that have redundant inertial sensors such as gyroscopes and accelerometers. It is wellknown that the more sensors are used, the smaller the navigation error of INS is, which means that the error covariance of the position estimate becomes less. Thus, when it is decided that double faults occur in the inertial sensors due to fault detection and isolation (FDI), it is necessary to decide whether the faulty sensors should be excluded or not. A new accommodation rule for double faults is proposed based on the error covariance of triad-solution of redundant inertial sensors, which is related to the navigation accuracy of INS. The proposed accommodation rule provides decision rules to determine which sensors should be excluded among faulty sensors. Monte Carlo simulation is performed for dodecahedron configuration, in which case the proposed accommodation rule can be drawn in the decision space of the two-dimensional Cartesian coordinate system.

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

An Expert System for Short-Term Generation Scheduling of Electric Power Systems (전력계통의 단기 발전계획 기원용 전문가시스템)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.831-840
    • /
    • 1992
  • This paper presents an efficient short-term generation scheduling method using a rule-based expert/consulting system approach to assist electric energy system operators and planners. The expert system approach is applied to improve the Dynamic Programming(DP) based generation scheduling algorithm. In the selection procedure of the feasible combinations of generating units at each stage, automatic consulting on the manipulation of several constraints such as the minimum up time, the minimum down time and the maximum running time constraints of generating units will be performed by the expert/consulting system. In order to maximize the solution feasibility, the aforementioned constraints are controlled by a rule-based expert system, that is, instead of imposing penalty cost to those constraint violated combinations, which sometimes may become the very reason of no existing solution, several constraints will be manipulated within their flexibilities using the rules and facts that are established by domain experts. In this paper, for the purpose of implementing the consulting of several constraints during the dynamic process of generation scheduling, an expert system named STGSCS is developed. As a building tool of the expert system, C Language Integrated Production System(CLIPS) is used. The effectiveness of the proposed algorithm has been demonstrated by applying it to a model electric energy system.

  • PDF

New Branching Criteria for the Asymmetric Traveling Salesman Problem (비대칭 외판원 문제를 위한 새로운 분지기법)

  • 지영근;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.9-18
    • /
    • 1996
  • Many algorithms have been developed for optimizing the asymmectric traveling salesman problem known as a representative NP-Complete problem. The most efficient ones of them are branch and bound algorithms based on the subtour elimination approach. To increase efficiency of the branch and bound algorithm. number of decision nodes should be decreased. For this the minimum bound that is more close at the optimal solution should be found or an effective bounding strategy should be used. If the optimal solution has been known, we may apply it usefully to branching. Because a good feasible solution should be found as soon as possible and have similar features of the optimal solution. By the way, the upper bound solution in branch and bound algorithm is most close at the optimal solution. Therefore, the upper bound solution can be used instead of the optimal solution and information of which can be applied to new branching criteria. As mentioned above, this paper will propose an effective branching rule using the information of the upper bound solution in the branch and bound algorithm. And superiority of the new branching rule will be shown by comparing with Bellmore-Malone's one and carpaneto-Toth's one that were already proposed.

  • PDF

The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation (국부 변형률 근사를 이용한 원통형 노치시편의 피로균열 발생수명의 예측)

  • Lim, Jae-Yong;Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2004
  • Fatigue crack initiation lives of round cylindrical notch specimen were investigated. Firstly, local strain approximation methods, such as the modified incremental Neuber's rule and the modified incremental Glinka's equivalent strain energy density(ESED) rule, were used to get multiaxial stress and strain state components at the notch tip. Based on the history of local stress and strain, multiaxial fatigue models were used to obtain fatigue crack initiation lives. Because the solution of Neuber's rule and Glinka's ESED rule make the upper and lower bound of local strain approximations, fatigue crack initiation lives are expected to place between life predictions by two local strain approximations. Experimental data were compared with the fatigue crack initiation life prediction results.

A Study on Combinatorial Dispatching Decision of Hybrid Flow Shop : Application to Printed Circuit Board Process (혼합 흐름공정의 할당규칙조합에 관한 연구: 인쇄회로기판 공정을 중심으로)

  • Yoon, Sungwook;Ko, Daehoon;Kim, Jihyun;Jeong, Sukjae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.10-19
    • /
    • 2013
  • Dispatching rule plays an important role in a hybrid flow shop. Finding the appropriate dispatching rule becomes more challenging when there are multiple criteria, uncertain demands, and dynamic manufacturing environment. Using a single dispatching rule for the whole shop or a set of rules based on a single criterion is not sufficient. Therefore, a multi-criteria decision making technique using 'the order preference by similarity to ideal solution' (TOPSIS) and 'analytic hierarchy process' (AHP) is presented. The proposed technique is aimed to find the most suitable set of dispatching rules under different manufacturing scenarios. A simulation based case study on a PCB manufacturing process is presented to illustrate the procedure and effectiveness of the proposed methodology.