• Title/Summary/Keyword: Rule based Systems

Search Result 1,056, Processing Time 0.034 seconds

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Rule-Based Cooperation of Distributed EC Systems

  • Lee, Dong-Woo
    • International Journal of Contents
    • /
    • v.5 no.3
    • /
    • pp.79-85
    • /
    • 2009
  • Emergent requests or urgent information among enterprises require their intimate collaboration in B2B EC (electronic commerce). This paper analyzes the needs of intimate cooperation of distributed EC systems in terms of business contracts and presents an active rule-based methodology of close cooperation among EC systems and an active rule component to support it. Since the rule component provides high level rule patterns and event-based immediate processing, system administrators and programmers can easily program and maintain intimate cooperation of distributed EC systems independently to the application logic. The proposed active rule component facilitates HTTP protocol. Its prototype is implemented in B2B EC environment and evaluated using basic trigger facility of a commercial DBMS.

Rule-based Named Entity (NE) Recognition from Speech (음성 자료에 대한 규칙 기반 Named Entity 인식)

  • Kim Ji-Hwan
    • MALSORI
    • /
    • no.58
    • /
    • pp.45-66
    • /
    • 2006
  • In this paper, a rule-based (transformation-based) NE recognition system is proposed. This system uses Brill's rule inference approach. The performance of the rule-based system and IdentiFinder, one of most successful stochastic systems, are compared. In the baseline case (no punctuation and no capitalisation), both systems show almost equal performance. They also have similar performance in the case of additional information such as punctuation, capitalisation and name lists. The performances of both systems degrade linearly with the number of speech recognition errors, and their rates of degradation are almost equal. These results show that automatic rule inference is a viable alternative to the HMM-based approach to NE recognition, but it retains the advantages of a rule-based approach.

  • PDF

Development of a Backward Chaining Inference Methodology Considering Unknown Facts Based on Backtrack Technique (백트래킹 기법을 이용한 불확정성 하에서의 역방향추론 방법에 대한 연구)

  • Song, Yong-Uk;Shin, Hyun-Sik
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.123-144
    • /
    • 2010
  • As knowledge becomes a critical success factor of companies nowadays, lots of rule-based systems have been and are being developed to support their activities. Large number of rule-based systems serve as Web sites to advise, or recommend their customers. They usually use a backward chaining inference algorithm based on backtrack to implement those interactive Web-enabled rule-based systems. However, when the users like customers are using these systems interactively, it happens frequently where the users do not know some of the answers for the questions from the rule-based systems. We are going to design a backward chaining inference methodology considering unknown facts based on backtrack technique. Firstly, we review exact and inexact reasoning. After that, we develop a backward chaining inference algorithm for exact reasoning based on backtrack, and then, extend the algorithm so that it can consider unknown facts and reduce its search space. The algorithm speeded-up inference and decreased interaction time with users by eliminating unnecessary questions and answers. We expect that the Web-enabled rule-based systems implemented by our methodology would improve users' satisfaction and make companies' competitiveness.

Implementing Rule-based Healthcare Edits

  • Abdullah, Umair;Shaheen, Muhammad;Ujager, Farhan Sabir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.116-132
    • /
    • 2022
  • Automated medical claims processing and billing is a popular application domain of information technology. Managing medical related data is a tedious job for healthcare professionals, which distracts them from their main job of healthcare. The technology used in data management has a sound impact on the quality of healthcare data. Most of Information Technology (IT) organizations use conventional software development technology for the implementation of healthcare systems. The objective of this experimental study is to devise a mechanism for use of rule-based expert systems in medical related edits and compare it with the conventional software development technology. A sample of 100 medical edits is selected as a dataset to be tested for implementation using both technologies. Besides empirical analysis, paired t-test is also used to validate the statistical significance of the difference between the two techniques. The conventional software development technology took 254.5 working hours, while rule-based technology took 81 hours to process these edits. Rule-based technology outperformed the conventional systems by increasing the confidence value to 95% and reliability measure to 0.462 (which is < 0.5) which is three times more efficient than conventional software development technology.

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

A Study of Combinative Index for Conflict Resolution (상충 해결을 위한 결합지수 연구)

  • 고희병;이수홍;이만호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.319-326
    • /
    • 2000
  • Expert systems using uncertain and ambiguous knowledge are not of the recent interests about uncertainty problem for performing inference similar to the decision making of a human expert. Human factors on rule-based systems often involve uncertain information. Expert systems had been used the methods of conflict resolution in a rule conflict situation, but this methods not properly solved the rule conflict. If a human expert appends a new rule to an original rule base, the rule base rightly causes a rule conflict. In this paper, the problem of rule conflict is regarded as one in which uncertainty of information is fundamentally involved. In the reduction of problem with uncertainty, we propose an enhanced rule ordering method, which improve the rule ordering method using Dempster-Shafer theory. We also propose a combinative index, which involve human factors of experts decision making.

  • PDF

Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System (불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF