• Title/Summary/Keyword: Rubber-Modified Epoxy Resin

Search Result 15, Processing Time 0.022 seconds

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

The Modification of Epoxy Resins with Liquid Rubbers (Liquid Rubber를 이용한 Epoxy Resin의 개질)

  • Choi, Sei-Young;Kim, Young-Jun;Yun, Ju-Ho
    • Elastomers and Composites
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 1996
  • In order to Improve the fracture toughness of epoxy resin system, liquid chloroprene rubber(LCR) and liquid butadiene rubber (LBR) which have hydroxy group were used in the brittle epoxy system. Mechanical and toughness characterization of the modified epoxy resins were investigated as a function of liquid rubbers content. Epoxy resins modified with both of the liquid rubbers showed complete phase-separation microstructure : In all of the LCR content, it was observed that the domain size of LCR dispersed in the epoxy matrix ranging from $2{\mu}m\;to\;5{\mu}m$. It was found that fracture toughness, $K_{ic}$, of the modified LCR system was enhanced continuously as increasing LCR content. However around 10phr of LBR system showed maximum fracture toughness. Specifically, when BPA add to the modified LCR system, thermal and mechanical properties increased than neat epoxy. At the same time, fracture toughness was enhanced.

  • PDF

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

Properties of Epoxy Adhesive Modified with Siloxane-imide (실록산 이미드로 개질된 변성 에폭시 수지의 물성)

  • Kim, W.;Gong, H.J.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Peel strength of epoxy adhesives can be increased by adding some amounts of XNBR. In this case, thermal resistance of the adhesive will be decreased by decrease of glass transition temperature of the adhesive. Epoxy resin modified with siloxane-imide was synthesized to improve thermal resistance and peel strength of the adhesive, after that the properties of modified epoxy resin were compared with the commercial epoxy resin. When 5% XNBR was added to 30% modified epoxy resin, this adhesive showed 0.42 N/mm of peel strength and $155^{\circ}C$ of glass transition temperature. These properties are enough compared to the required properties by the industry, i.e., 0.3 N/mm and $150^{\circ}C$, respectively. Weight loss of the modified epoxy resin by the treatment of nitric acid and 0.1N NaOH was reduced, but weight gain by the humid condition was increased by the presence of benzene ring and imide ring. 30% modified epoxy resin blended with 5% XNBR showed 220% improvement in tensile strength and elongation compared to the case of common epoxy resin. This is due to the flexibility of the siloxane in the modified epoxy resin.

A Study on Physical Properties of Epoxy Adhesives Modified with Polybutadiene Rubber (Polybutadiene 고무 변성 에폭시 접착제의 물성에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.26 no.3
    • /
    • pp.193-201
    • /
    • 1991
  • Epoxy resin and CTBN(carboxyl terminated butadiene acrylonitrile) rubber were reacted at $150^{\circ}C$. Epoxy mixtures containing reactant in a ratio $0{\sim}75%(wt%)$ of total liquid component were with dicyandiamide(DICY) at $130{\sim}200^{\circ}C$. Cure, thermal and adhesive properties were investigated in relation to rubber content, cure temperature, hardner content and promoter content. $CTBN{\times}13$ showed better properties in miscibility, curing time and adhesive strength. 2PZ-CNS was more excellent in Tg, and melamine was in adhesive strength. Adhesive strength represented best at rubber content $12{\times}15%$.

  • PDF

Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC (PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향)

  • Lee, Jaeyoung;Lee, Wookum;Rim, Hyungryul;Joung, Gyubum;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Toughening of Epoxy Resin with PES-CTBN-PES Triblock Copolymers (PES-CTBN-PES 공중합체를 이용한 에폭시 수지의 강인성 향상 연구)

  • 김형륜;명범영;송경헌;육종일;윤태호
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.246-253
    • /
    • 2001
  • Amino terminated PES-CTBN-PES triblock copolymer was synthesized from PES oligomer and commercial CTBN rubber (CTBN1300$\times$13), and molecular weight of the copolymer was controlled to be 15000 g/mole. The copolymer was utilized to toughen diglycidyl ether of bisphenol-A (DGEBA) epoxy resin which was cured with 4,4'-diaminodi-phenylsulfone (DDS) and subjected to the measurement of thermal properties, fracture toughness ( $K_{IC}$), flexural properties and solvent resistance. The properties were compared with those from the samples modified by CTBN/PES blends. The maximum loading of copolymer into the epoxy resin was 40 wt% without utilizing solvent, at which $K_{IC}$ fracture toughness of 2.21 MPa${\cdot}m^{0.5}$ was obtained without sacrificing flexural properties and chemical resistance. However, the epoxy resin modified with PES/CTBN blend exhibited much lower $K_{IC}$ and flexural properties compared to the epoxy resins toughened by PES-CTBN-PES copolymers.

  • PDF

Self-Healing Asphalt Prepared by using Ionic Epoxy Resin

  • Lee, Young-Jik;Seo, Jun-Young;Kim, Seo-Yeon;Lee, Seung-Hyun;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Anionic epoxy compound was synthesized and added to asphalt aiming to prepare self-healing asphalt. Epoxy-modified asphalt showed excellent modification effect and healing effect as well. The results revealed that with 5% addition of polymer the tensile strength, impact strength and complex shear modulus of the polymer-modified asphalt increased by 65%. 64% and 35%, respectively. It seems that high interaction occurs between polymer and asphalt matrix. Self-healing efficiency of the polymer-modified asphalt based on tensile strength showed 100%, comparing to 79% of straight asphalt. In impact experiment the polymer-modified asphalt showed 99% of healing efficiency, comparing to 77% of straight asphalt. In rheological experiment the polymer-modified asphalt showed 103% of healing efficiency, comparing to 72% of straight asphalt. It appears that the ionic bonding existing in epoxy polymers contributed to high values of self-healing efficiency. The polymer which has high intermolecular force fills the crack of the asphalt, pulling the opponent side each other, and so the original properties were restored.

Improvement of Polyimide/Epoxy Adhesion Strength from the Modification of Polyimide Surface and Epoxy Adhesive (폴리이미드 표면개질과 에폭시접착제 개질을 통한 폴리이미드/에폭시의 접착력 향상)

  • Kim, Seong-Hun;Lee, Dong-U;Jeong, Gyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 1999
  • In order to minimize flexible printed circuit(FPC), which is used in computer, communication, medical facility, aviation space industry, it is required to improve the interfacial adhesion of polymide/epoxy or polyimide/polyimide consists of FPC. In this study, it was considered to improve the adhesion strength of polyimide/epoxy joint by introducing functional group on polyimide film and improving mechanical property of epoxy. Functional group on polyimide film was introduced by changing polyimide film surface to polyamic acid in KOH aqueous solution. The optimum conditions for surface modification were the concentration of 1M KOH and treatment time of 5min. Also, the optimum adhesion strength of polyimide/epoxy joint was obtained using rubber modified epoxy and polyamic acid as a base resin and curing agent of epoxy adhesive, respectively. The degree of surface modification of polyimide film examined with contact angle measurement of FTIR, thus modification of polyimide to polyamic acid was identified. Fracture surface of plymide/epoxy joint was analyzed by scanning electron microscopy, and modified polyamic acid reimidezed to polymide as increasing curing temperature.

  • PDF